Ukrainian Journal of Physical Optics
2025 Volume 26, Issue 3
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

QUIESCENT OPTICAL SOLITONS IN MAGNETO-OPTIC WAVEGUIDES WITH KUDRYASHOV'S AND GENERALIZED NONLOCAL FORM OF SELF-PHASE MODULATION HAVING NONLINEAR CHROMATIC DISPERSION AND GENERALIZED TEMPORAL EVOLUTION
E.M.E. Zayed, M. El-Shater, A.H. Arnous, Y. Yildirim, A. Biswas, L. Moraru and C.M.B. Dragomir
Author Information
1E.M.E. Zayed
,
1M. El-Shater
,
2A.H. Arnous
,
3,4Y. Yildirim
,
5,6,7,8A. Biswas
,
9,10L. Moraru
,
7C.M.B. Dragomir
1Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
2Department of Engineering Mathematics and Physics, Higher Institute of Engineering, El Shorouk Academy, Cairo, Egypt
3Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey
4Mathematics Research Center, Near East University, 99138 Nicosia, Cyprus
5Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
6Department of Physics and Electronics, Khazar University, Baku, AZ-1096, Azerbaijan
7Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania
8Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa
9Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008, Romania
10 Department of Physics, School of Science and Technology, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa







Ukr. J. Phys. Opt.
Vol. 26
,
Issue 3 , pp. 03011 - 03026 (2025).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2025.03011
ABSTRACT
This paper retrieves quiescent optical solitons that merge from magneto-optic waveguides that maintain Kudryashov’s form of self–phase modulation coupled with a generalized form of non–local nonlinearity. The model also comes with nonlinear chromatic dispersion and is considered with generalized temporal evolution. The enhanced direct algebraic method has made this retrieval possible. A full spectrum of solitons is thus recovered through the intermediary Jacobi’s elliptic functions as well as Weierstrass’ elliptic functions. The parameter constraints for the existence of such solitons are also enumerated.
Keywords:
solitons, algebraic method, cnoidal waves
UDC:
535.32
- Adem, A. R., Biswas, A., Yildirim Y., & Alshomrani, A. S. Implicit quiescent optical soliton perturbation with nonlinear chromatic dispersion and linear temporal evolution having a plethora of self-phase modulation structures by Lie symmetry. To appear in Nonlinear Optics, Quantum Optics: Concepts in Modern Optics.
- Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 23(3), 142-144.
doi:10.1063/1.1654836 - Schamel, H. (1972). Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Physics, 14(10), 905.
doi:10.1088/0032-1028/14/10/002 - Kudryashov, N. A. (2022). Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Applied Mathematics Letters, 128, 107888.
doi:10.1016/j.aml.2021.107888 - Zayed, E. M., El-Shater, M., Arnous, A. H., Yıldırım, Y., Hussein, L., Jawad, A. J. A. M., Veni, S. S. & Biswas, A. (2024). Quiescent optical solitons with Kudryashov's generalized quintuple-power law and nonlocal nonlinearity having nonlinear chromatic dispersion with generalized temporal evolution by enhanced direct algebraic method and sub-ODE approach. The European Physical Journal Plus, 139(10), 1-21.
doi:10.1140/epjp/s13360-024-05636-8 - Zayed, E. M., El-Shater, M., Elsherbeny, A. M., Arnous, A. H., Biswas, A., Yildirim, Y., Georgescu, P.L., Moraru, L., Jawad, A.J.M., & Hussein, L. (2025). Quiescent optical solitons in magneto-optic waveguides having Kudryashov's quintuple power-law of self-phase modulation. Ain Shams Engineering Journal, 16(2), 103260.
doi:10.1016/j.asej.2025.103260 - Adem, A. R., Biswas, A. N. J. A. N., Yildirim, Y. A. K. U. P., Jawad, A. J. M., & Alshomrani, A. S. (2024). Implicit quiescent optical solitons with generalized quadratic cubic form of self phase modulation and nonlinear chromatic dispersion by lie symmetry. Ukr. J. Phys. Opt, 25(2), 02016-02020.
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.02016 - Haider, T. (2017). A review of magneto-optic effects and its application. Int. J. Electromagn. Appl., 7(1), 17-24.
- Karlsson, M., & Höök, A. (1994). Soliton-like pulses governed by fourth order dispersion in optical fibers. Optics Communications, 104(4-6), 303-307.
doi:10.1016/0030-4018(94)90560-6 - Mihalache, D., Mazilu, D., Malomed, B. A., & Torner, L. (1998). Asymmetric spatio-temporal optical solitons in media with quadratic nonlinearity. Optics Communications, 152(4-6), 365-370.
doi:10.1016/S0030-4018(98)00206-5 - Mihalache, D., Mazilu, D., Crasovan, L. C., Torner, L., Malomed, B. A., & Lederer, F. (2000). Three-dimensional walking spatiotemporal solitons in quadratic media. Physical Review E, 62(5), 7340.
doi:10.1103/PhysRevE.62.7340 - Kudryashov, N. A. (2020). Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos, Solitons & Fractals, 140, 110202.
doi:10.1016/j.chaos.2020.110202 - Kudryashov, N. A. (2020). Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chinese Journal of Physics, 66, 401-405.
doi:10.1016/j.cjph.2020.06.006 - Mak, W. C., Malomed, B. A., & Chu, P. L. (1998). Three-wave gap solitons in waveguides with quadratic nonlinearity. Physical Review E, 58(5), 6708.
doi:10.1103/PhysRevE.58.6708 - Shohib, R. M. A., Alngar, M. E. M., Biswas, A., Yildirim, Y., Triki, H., Moraru, L., Iticescu, C., Georgescu P. L., & Asiri A. (2023). Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian Journal of Physical Optics, 24(3).
doi:10.3116/16091833/24/3/248/2023 - Ahmed, K. K., Badra, N. M., Ahmed, H. M., Rabie, W. B., Mirzazadeh, M., Eslami, M., & Hashemi, M. S. (2024). Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method. Nonlinear Analysis: Modelling and Control, 29(2), 205-223.
doi:10.15388/namc.2024.29.34070 - Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P & Popkov, A. F. (2005). Applications of magneto-optical waveguides in integrated optics. Journal of the Optical Society of America B, 22(1), 240-253.
doi:10.1364/JOSAB.22.000240 - Biswas, A., Arnous, A. H., Ekici, M., Sonmezoglu, A., Seadawy, A. R., Zhou, Q., Mahmood, M. F., Moshokoa, S. P., & Belic, M. (2018). Optical soliton perturbation in magneto-optic waveguides. Journal of Nonlinear Optical Physics and Materials, 27(1), 1850005.
doi:10.1142/S0218863518500054 - Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S. P., Ullah, M. Z., Biswas, A., & Belic, M. (2017). Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices and Microstructures, 107, 197-218.
doi:10.1016/j.spmi.2017.04.021 - Kara, A. H., Biswas, A., & Belic, M. (2016). Conservation laws for optical solitons in birefringent fibers and magneto-optic waveguides. Optik, 127(24), 11662-11673.
doi:10.1016/j.ijleo.2016.09.075 - Zayed, E. M., Alngar, M. E., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K., & Belic, M. R. (2020). Solitons in magneto-optic waveguides with Kudryashov's law of refractive index. Chaos, Solitons & Fractals, 140, 110129. (2020).
doi:10.1016/j.chaos.2020.110129 - Zayed, E. M., Alngar, M. E., Biswas, A., Kara, A. H., Moraru, L., Ekici, M., Alzahrani, A. K. & Belic, M. R. (2020). Solitons and conservation laws in magneto-optic waveguides with triple-power law nonlinearity. Journal of Optics, 49, 584-590.
doi:10.1007/s12596-020-00650-2 - Geng, Y., & Li, J. (2008). Exact solutions to a nonlinearly dispersive Schrödinger equation. Applied Mathematics and Computation, 195(2), 420-439.
doi:10.1016/j.amc.2007.04.119 - Yan, Z. (2006). Envelope compactons and solitary patterns. Physics Letters A, 355(3), 212-215.
doi:10.1016/j.physleta.2006.02.032 - Yan, Z. (2006). Envelope compact and solitary pattern structures for the GNLS (m, n, p, q) equations. Physics Letters A, 357(3), 196-203.
doi:10.1016/j.physleta.2006.04.032 - Yan, Z. (2007). New exact solution structures and nonlinear dispersion in the coupled nonlinear wave systems. Physics Letters A, 361(3), 194-200.
doi:10.1016/j.physleta.2006.07.032 - Zhang, Z. Y., Liu, Z. H., Miao, X. J., & Chen, Y. Z. (2011). Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity. Physics Letters A, 375(10), 1275-1280.
doi:10.1016/j.physleta.2010.11.070 - Zhang, Z. Y., Li, Y. X., Liu, Z. H., & Miao, X. J. (2011). New exact solutions to the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity via modified trigonometric function series method. Communications in Nonlinear Science and Numerical Simulation, 16(8), 3097-3106.
doi:10.1016/j.cnsns.2010.12.010 - Sirendaoreji. (2007). Auxiliary equation method and new solutions of Klein-Gordon equations. Chaos, Solitons and Fractals, 31(4), 943-950.
doi:10.1016/j.chaos.2005.10.048 - Ekici, M., & Sarmaşık, C. A. (2024). Certain analytical solutions of the concatenation model with a multiplicative white noise in optical fibers. Nonlinear Dynamics, 112(11), 9459-9476.
doi:10.1007/s11071-024-09478-y - Jihad, N., & Abd Almuhsan, M. (2023). Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Rafidain J. Eng. Sci, 1(1), 81-92.
doi:10.61268/0dat0751
-
У цій статті отримуються розв’язки спокійних оптичних солітонів, що виникають у магніто-оптичних хвилеводах, які зберігають форму самофазової модуляції Кудряшова в поєднанні з узагальненою формою нелокальної нелінійності. Модель також враховує нелінійну хроматичну дисперсію та розглядається з урахуванням узагальненої часової еволюції. Завдяки вдосконаленому прямому алгебраїчному методу стало можливим отримання таких солітонів. Таким чином, повний спектр солітонів відновлюється за допомогою проміжних еліптичних функцій Якобі, а також еліптичних функцій Вейєрштраса. Також перераховані параметричні обмеження для існування таких солітонів.
Ключові слова: солітони, алгебраїчний метод. кноідальні хвилі
© Ukrainian Journal of Physical Optics ©