Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 3


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

QUIESCENT OPTICAL SOLITONS IN MAGNETO-OPTIC WAVEGUIDES WITH KUDRYASHOV'S AND GENERALIZED NONLOCAL FORM OF SELF-PHASE MODULATION HAVING NONLINEAR CHROMATIC DISPERSION AND GENERALIZED TEMPORAL EVOLUTION

E.M.E. Zayed, M. El-Shater, A.H. Arnous, Y. Yildirim, A. Biswas, L. Moraru and C.M.B. Dragomir


ABSTRACT

This paper retrieves quiescent optical solitons that merge from magneto-optic waveguides that maintain Kudryashov’s form of self–phase modulation coupled with a generalized form of non–local nonlinearity. The model also comes with nonlinear chromatic dispersion and is considered with generalized temporal evolution. The enhanced direct algebraic method has made this retrieval possible. A full spectrum of solitons is thus recovered through the intermediary Jacobi’s elliptic functions as well as Weierstrass’ elliptic functions. The parameter constraints for the existence of such solitons are also enumerated.

Keywords: solitons, algebraic method, cnoidal waves

UDC: 535.32

    1. Adem, A. R., Biswas, A., Yildirim Y., & Alshomrani, A. S. Implicit quiescent optical soliton perturbation with nonlinear chromatic dispersion and linear temporal evolution having a plethora of self-phase modulation structures by Lie symmetry. To appear in Nonlinear Optics, Quantum Optics: Concepts in Modern Optics.
    2. Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 23(3), 142-144.
      doi:10.1063/1.1654836
    3. Schamel, H. (1972). Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Physics, 14(10), 905.
      doi:10.1088/0032-1028/14/10/002
    4. Kudryashov, N. A. (2022). Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Applied Mathematics Letters, 128, 107888.
      doi:10.1016/j.aml.2021.107888
    5. Zayed, E. M., El-Shater, M., Arnous, A. H., Yıldırım, Y., Hussein, L., Jawad, A. J. A. M., Veni, S. S. & Biswas, A. (2024). Quiescent optical solitons with Kudryashov's generalized quintuple-power law and nonlocal nonlinearity having nonlinear chromatic dispersion with generalized temporal evolution by enhanced direct algebraic method and sub-ODE approach. The European Physical Journal Plus, 139(10), 1-21.
      doi:10.1140/epjp/s13360-024-05636-8
    6. Zayed, E. M., El-Shater, M., Elsherbeny, A. M., Arnous, A. H., Biswas, A., Yildirim, Y., Georgescu, P.L., Moraru, L., Jawad, A.J.M., & Hussein, L. (2025). Quiescent optical solitons in magneto-optic waveguides having Kudryashov's quintuple power-law of self-phase modulation. Ain Shams Engineering Journal, 16(2), 103260.
      doi:10.1016/j.asej.2025.103260
    7. Adem, A. R., Biswas, A. N. J. A. N., Yildirim, Y. A. K. U. P., Jawad, A. J. M., & Alshomrani, A. S. (2024). Implicit quiescent optical solitons with generalized quadratic cubic form of self phase modulation and nonlinear chromatic dispersion by lie symmetry. Ukr. J. Phys. Opt, 25(2), 02016-02020.
      doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.02016
    8. Haider, T. (2017). A review of magneto-optic effects and its application. Int. J. Electromagn. Appl., 7(1), 17-24.
    9. Karlsson, M., & Höök, A. (1994). Soliton-like pulses governed by fourth order dispersion in optical fibers. Optics Communications, 104(4-6), 303-307.
      doi:10.1016/0030-4018(94)90560-6
    10. Mihalache, D., Mazilu, D., Malomed, B. A., & Torner, L. (1998). Asymmetric spatio-temporal optical solitons in media with quadratic nonlinearity. Optics Communications, 152(4-6), 365-370.
      doi:10.1016/S0030-4018(98)00206-5
    11. Mihalache, D., Mazilu, D., Crasovan, L. C., Torner, L., Malomed, B. A., & Lederer, F. (2000). Three-dimensional walking spatiotemporal solitons in quadratic media. Physical Review E, 62(5), 7340.
      doi:10.1103/PhysRevE.62.7340
    12. Kudryashov, N. A. (2020). Highly dispersive optical solitons of equation with various polynomial nonlinearity law. Chaos, Solitons & Fractals, 140, 110202.
      doi:10.1016/j.chaos.2020.110202
    13. Kudryashov, N. A. (2020). Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chinese Journal of Physics, 66, 401-405.
      doi:10.1016/j.cjph.2020.06.006
    14. Mak, W. C., Malomed, B. A., & Chu, P. L. (1998). Three-wave gap solitons in waveguides with quadratic nonlinearity. Physical Review E, 58(5), 6708.
      doi:10.1103/PhysRevE.58.6708
    15. Shohib, R. M. A., Alngar, M. E. M., Biswas, A., Yildirim, Y., Triki, H., Moraru, L., Iticescu, C., Georgescu P. L., & Asiri A. (2023). Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian Journal of Physical Optics, 24(3).
      doi:10.3116/16091833/24/3/248/2023
    16. Ahmed, K. K., Badra, N. M., Ahmed, H. M., Rabie, W. B., Mirzazadeh, M., Eslami, M., & Hashemi, M. S. (2024). Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method. Nonlinear Analysis: Modelling and Control, 29(2), 205-223.
      doi:10.15388/namc.2024.29.34070
    17. Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P & Popkov, A. F. (2005). Applications of magneto-optical waveguides in integrated optics. Journal of the Optical Society of America B, 22(1), 240-253.
      doi:10.1364/JOSAB.22.000240
    18. Biswas, A., Arnous, A. H., Ekici, M., Sonmezoglu, A., Seadawy, A. R., Zhou, Q., Mahmood, M. F., Moshokoa, S. P., & Belic, M. (2018). Optical soliton perturbation in magneto-optic waveguides. Journal of Nonlinear Optical Physics and Materials, 27(1), 1850005.
      doi:10.1142/S0218863518500054
    19. Ekici, M., Zhou, Q., Sonmezoglu, A., Moshokoa, S. P., Ullah, M. Z., Biswas, A., & Belic, M. (2017). Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices and Microstructures, 107, 197-218.
      doi:10.1016/j.spmi.2017.04.021
    20. Kara, A. H., Biswas, A., & Belic, M. (2016). Conservation laws for optical solitons in birefringent fibers and magneto-optic waveguides. Optik, 127(24), 11662-11673.
      doi:10.1016/j.ijleo.2016.09.075
    21. Zayed, E. M., Alngar, M. E., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K., & Belic, M. R. (2020). Solitons in magneto-optic waveguides with Kudryashov's law of refractive index. Chaos, Solitons & Fractals, 140, 110129. (2020).
      doi:10.1016/j.chaos.2020.110129
    22. Zayed, E. M., Alngar, M. E., Biswas, A., Kara, A. H., Moraru, L., Ekici, M., Alzahrani, A. K. & Belic, M. R. (2020). Solitons and conservation laws in magneto-optic waveguides with triple-power law nonlinearity. Journal of Optics, 49, 584-590.
      doi:10.1007/s12596-020-00650-2
    23. Geng, Y., & Li, J. (2008). Exact solutions to a nonlinearly dispersive Schrödinger equation. Applied Mathematics and Computation, 195(2), 420-439.
      doi:10.1016/j.amc.2007.04.119
    24. Yan, Z. (2006). Envelope compactons and solitary patterns. Physics Letters A, 355(3), 212-215.
      doi:10.1016/j.physleta.2006.02.032
    25. Yan, Z. (2006). Envelope compact and solitary pattern structures for the GNLS (m, n, p, q) equations. Physics Letters A, 357(3), 196-203.
      doi:10.1016/j.physleta.2006.04.032
    26. Yan, Z. (2007). New exact solution structures and nonlinear dispersion in the coupled nonlinear wave systems. Physics Letters A, 361(3), 194-200.
      doi:10.1016/j.physleta.2006.07.032
    27. Zhang, Z. Y., Liu, Z. H., Miao, X. J., & Chen, Y. Z. (2011). Qualitative analysis and traveling wave solutions for the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity. Physics Letters A, 375(10), 1275-1280.
      doi:10.1016/j.physleta.2010.11.070
    28. Zhang, Z. Y., Li, Y. X., Liu, Z. H., & Miao, X. J. (2011). New exact solutions to the perturbed nonlinear Schrödinger's equation with Kerr law nonlinearity via modified trigonometric function series method. Communications in Nonlinear Science and Numerical Simulation, 16(8), 3097-3106.
      doi:10.1016/j.cnsns.2010.12.010
    29. Sirendaoreji. (2007). Auxiliary equation method and new solutions of Klein-Gordon equations. Chaos, Solitons and Fractals, 31(4), 943-950.
      doi:10.1016/j.chaos.2005.10.048
    30. Ekici, M., & Sarmaşık, C. A. (2024). Certain analytical solutions of the concatenation model with a multiplicative white noise in optical fibers. Nonlinear Dynamics, 112(11), 9459-9476.
      doi:10.1007/s11071-024-09478-y
    31. Jihad, N., & Abd Almuhsan, M. (2023). Evaluation of impairment mitigations for optical fiber communications using dispersion compensation techniques. Rafidain J. Eng. Sci, 1(1), 81-92.
      doi:10.61268/0dat0751

    У цій статті отримуються розв’язки спокійних оптичних солітонів, що виникають у магніто-оптичних хвилеводах, які зберігають форму самофазової модуляції Кудряшова в поєднанні з узагальненою формою нелокальної нелінійності. Модель також враховує нелінійну хроматичну дисперсію та розглядається з урахуванням узагальненої часової еволюції. Завдяки вдосконаленому прямому алгебраїчному методу стало можливим отримання таких солітонів. Таким чином, повний спектр солітонів відновлюється за допомогою проміжних еліптичних функцій Якобі, а також еліптичних функцій Вейєрштраса. Також перераховані параметричні обмеження для існування таких солітонів.

    Ключові слова: солітони, алгебраїчний метод. кноідальні хвилі


© Ukrainian Journal of Physical Optics ©