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Abstract. This paper retrieves quiescent optical solitons that merge from magneto-optic waveguides that
maintain Kudryashov’s form of self-phase modulation coupled with a generalized form of non-local
nonlinearity. The model also comes with nonlinear chromatic dispersion and is considered with generalized
temporal evolution. The enhanced direct algebraic method has made this retrieval possible. A full spectrum of
solitons is thus recovered through the intermediary Jacobi’s elliptic functions as well as Weierstrass’ elliptic
functions. The parameter constraints for the existence of such solitons are also enumerated.
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1. Introduction
The concept of quiescent optical solitons has been established for several decades, yet their

practical applicability across a broad range of optoelectronic devices has only recently begun to
gain momentum. Traditionally, optical solitons have been widely studied in optical fibers [8-12]
and gap solitons in Bragg gratings [13,14]. However, the study of quiescent solitons—those that
remain stationary in their propagation medium—has largely remained theoretical. The existence
of these solitons in various physical systems has been recognized in previous studies [1-7].
Despite this, the theoretical models describing quiescent solitons are still in their infancy, with
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little experimental validation. The laws governing self-phase modulation (SPM), as proposed by
Kudryashov, were introduced approximately half a decade ago. Consequently, these theoretical
models have not yet been tested in a laboratory setting. No experimental demonstrations
involving oscilloscopes or eye diagrams have been reported in the literature to date.

One of the key challenges in the study of quiescent solitons is the role of chromatic
dispersion (CD). CD significantly influences pulse propagation in optical communication
systems, leading to dispersion-induced pulse broadening. When CD is linear, solitons
typically remain mobile. However, when CD is nonlinear, it can induce the formation of
quiescent solitons, where the optical pulse becomes stationary. The current study
investigates the emergence of such quiescent solitons in magneto-optic waveguides [6,15-
22], incorporating a nonlinear CD component alongside Kudryashov’'s form of SPM. This
work builds upon prior research [6], which presented preliminary results on this subject.

A crucial distinction between this study and previous works lies in the mathematical
formulation of the problem. Earlier studies predominantly addressed mobile solitons under
linear CD conditions. In contrast, the present work considers a nonlinear CD model, a critical
factor for stabilizing quiescent solitons. Additionally, this paper explores the effects of
generalized temporal evolution, where a tunable parameter (1) governs the temporal
characteristics of the soliton dynamics. When I=1, the model reduces to the conventional
form studied in laboratory experiments, referred to as linear temporal evolution. This
generalization provides a broader understanding of soliton dynamics beyond the
conventional frameworks.

The enhanced direct algebraic method is employed to retrieve the mathematical
structures of quiescent solitons. This method has proven to be a robust analytical technique
for solving nonlinear differential equations in soliton theory. The implementation of this
approach allows for the recovery of a full spectrum of quiescent solitons within the proposed
magneto-optic waveguide model. It is worth noting that while this study utilizes the
enhanced direct algebraic method, other analytical techniques have also been successfully
applied to related problems. These include the projective Riccati equation approach [7] and
the robust Lie symmetry analysis [1,7], which have been instrumental in uncovering soliton
solutions in different nonlinear optical systems.

The mathematical framework developed in this study involves intermediary elliptic
functions, particularly Jacobi’s elliptic functions (cnoidal waves) and Weierstrass’ elliptic
functions. These functions provide a natural extension of soliton solutions, where special
cases arise when the modulus of ellipticity in Jacobi’s functions approaches unity. In this
limit, the solutions reduce to standard soliton profiles, which can be interpreted as
fundamental quiescent solitons in the system. Elliptic functions enrich the analysis by
offering a continuous transition from periodic wave structures to localized soliton solutions.

This paper explores the emergence of quiescent optical solitons in magneto-optic
waveguides under the combined effects of nonlinear CD and Kudryashov’s form of SPM. The
study introduces generalized temporal evolution to provide a more comprehensive
perspective on soliton dynamics. A diverse range of quiescent soliton solutions is retrieved
by employing the enhanced direct algebraic method. The subsequent sections of this paper
present the detailed mathematical modeling, solution methodology, and physical
interpretations of the obtained soliton solutions.
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2. Governing model
The dimensionless form of the nonlinear Schrédinger’s equation (NLSE) with SPM structure

from Kudryashov’s law and dual form of generalized nonlocal nonlinearity having nonlinear
CD and generalized linear temporal evolution is written as:

i(a"), +aflal’a') +[b|q|" welaf" +dlaf" +el + f(lal") +o(ja* )Xx}q’ =0, (1

In Eq. (1), g(x,t), is the complex-valued function representing the wave amplitude, while x
and t are the independent variables that account for the spatial and temporal coordinates,

respectively. The first term represents the generalized temporal evolution, with i = V-1 and
I being the generalized temporal evolution parameter. The second term with coefficient a
gives the CD, while the parameter p is the nonlinearity parameter. The remaining set of
terms collectively represents the effect of SPM where the parameters b, ¢, d, and e come from
Kudryashov’s proposed structure of nonlinearity while f and g represent dual-forms of
nonlinear forms of nonlocal nonlinearity (n). This model for an optical mono-mode fiber will
now be reformed for a magneto-optic waveguide. This takes the form:

i(a"), +as(|a"a)

bilaf" +exla™ +dylaf” +eqlaf" + £ ) +91(laf") @)
- n 2n 3n 4n n 2n q1 - erl’
byl sy ey (') va ()

and
i(rl), + a2(|r|p rl)
XX

bl colr" + ol s ol fo(rl") +aa(i) 3)
- n 2n 3n 4n n 2n rI:qul
sholaf" + Llaf" +syla™ +nola™ + po(a") +a(a”)

XX

In Egs. (2) and (3), the parameters Q; for (j=1,2) represent the magneto-optic parameters

associated with the two wave components. Physically, these parameters correspond to the
strengths of the external magnetic field along each of the two polarization components of the
wave. This emanates from the fact that in 1845, Michael Faraday discovered that the
polarization of a linearly polarized light beam is rotated upon propagating through a media
that is placed in a magnetic field parallel to the propagation direction [8]. In the context of
magneto-optic waveguides, the external magnetic field plays a crucial role in modulating the
medium's optical properties, influencing the optical solitons' propagation dynamics. The
presence of Q; and @, ensures that the model accounts for the effects of magnetization

along different directions, ultimately contributing to quiescent solitons' formation.

The wave amplitudes along these two components are denoted by q and r. These amplitude
functions describe the evolution of the optical field in the presence of the nonlinear effects
induced by SPM—the coupled nature of Egs.(2) and (3) signify that the dynamics of each
component influence the other, leading to a rich interplay of nonlinear effects.

A critical aspect of the nonlinear interactions in this system is governed by the set of
coefficients hj, I, s, n;, p;, q; for j=1,2. These coefficients are fixed parameters that define the
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strength of the self-phase modulation (SPM) in the waveguide system. In nonlinear optics,
SPM arises due to the intensity-dependent refractive index, leading to a self-induced phase
shift in the propagating wave. The parameters hj, [, s;, n;, p;, and g; specifically quantify
different aspects of the nonlinear response of the medium. h; represents a fundamental
contribution to the SPM effect, typically associated with the leading-order nonlinear
interaction term. [; accounts for additional higher-order nonlinear effects that contribute to
the refractive index modulation. s; governs the strength of cubic nonlinearity, which is critical
for forming of soliton solutions. n; modulates the influence of higher-order nonlinear effects
beyond cubic terms, which may be relevant in highly nonlinear regimes. p; contributes to the
nonlinear dispersion effects, influencing the pulse-shaping dynamics. g; represents the
interaction between SPM and other nonlocal nonlinearities, playing a crucial role in
stabilizing of quiescent solitons. These parameters are crucial in determining the specific
characteristics of the optical solitons in the magneto-optic waveguide. By carefully selecting
their values, one can control the strength and nature of the nonlinear effects, leading to
different soliton behaviors, including quiescent (stationary) solitons and their dynamic
counterparts.

The coupled system described by Egs. (2) and (3) will be analyzed using the enhanced
direct algebraic approach. This method is a powerful analytical technique for solving
nonlinear differential equations and is particularly well-suited for extracting soliton
solutions. The approach involves transforming the coupled system into a solvable algebraic
form, allowing for the systematic derivation of exact soliton solutions.

Through this mathematical framework, the emergence of quiescent optical solitons will
be rigorously established. Unlike their mobile counterparts, these solitons remain stationary
in the propagation medium due to the balance between nonlinear SPM and the magneto-
optic effects introduced through Q. The results obtained from this analysis will be

presented in the subsequent sections, providing detailed insights into the characteristics of
the recovered soliton solutions.

3. Mathematical analysis
In order to analyze Egs.(2) and (3) further, we assume that the wave profiles have the

following phase-amplitude split-up:
() =d(x)er,
q(x,t)=¢;(x)ei’t,

where ¢;(x) (j=1,2) are real functions and A is a constant that stands for the frequency.

(4)

Inserting Eq. (4) into Egs. (2) and (3) , we get:
219} (x)+ay (p+1)(p+1-1)#f " (x)o2(x) +ay (p+ Dgf ™~ (x)g{ (x)
b1+ (x) +rdfH (x) + digfm! (x) + e (x)+ fin(n 1) 2+ (x) ¢ (x)
+fing{ ! (x) 1 (x) + 91 (2n) (2n=1) 2241 (x) ¢ (x) + g1 (2n) 97" (x) 6y ()
gy (x)+ L3 (x)+ 51837 (x) + mgdm (x) + pin(n=1) ¢33+ (x) ¢ (x)
+pingy T (x) gy (%) + a1 (2n)(2n—-1)¢37 24 (x)6 (x) + a1 (2n) g1 (), (x)
= Qi3 (x),

(5)

and
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g (x) +ay(p+ 1)(p+1-1)# "2 (x)g2 (x) + ay(p+1)g5 ™" (x)4; (x)
+hypi+l (x )+C2¢22n+1(x)+d2¢3n+1( )+ epddnl (x) + fon(n—1)g5-2+ (x)g2(x)
+fands ! (x) 8, (x) +92(2n) (2n=1)g3724 (x) 82 (x) + g2 (2n) 437 (x), () (6)
! (x) + P (x) + o9 (x) + g (x) + pon(n—=1) 2+ (x) 6 (x)
0~ (X)6y (%) + a2 (2n)(2n = 1)gf" 2 (x) 7 (x) + a2 (2n) 97" (x) 1 (
Now, for the sake of simplicity, let us put
62 (x)= 241 (x), (7)
where y isanonzero constantand y #1.Egs. (5) and (6) become:
A -Qu! +ay(p+ 1) (p+ 1= 1) ()62 (x) +ay (p+ ™ ()6 (x)
+[by +hy ] (x) +[eg + I 2+ | (x) +[dy + 513|677 (x)
Hleg +mzme 6t (x)+ [ f + pyrtn(n-1)g1-2 (x)62 (x) ®)
HUf+ oz I (0065 () + g1 + a2 (2n) (20— 1) 6272 (x)62(x)
Ha + a2 ) (20)7 ()4 (x) =0,

X)=Qx¢{ (x).

and
Ayl =Qy +ay (p+1)(p+1-1) xpHgf = (x)p2(x) + ay(p+1) 2210 ™ (x) 7 ()
+[ byt + by |97 (%) +[c 2t + 1 [¢Fn (x) +[dp 230+ + 5, ] (x)
+[egx 4+ Jpn (x) + [ o+ + by ]n(n—1) g2 (x)dy? (x) (9)
+[ faxm + by gt (x)dy (x) +[go 2 + a5 ](2n) (20— 1) 6272 (x) B2 (x)

G227 +qz)(2n) ¢ (x)y (x) =0
Egs. (8) and (9) are equivalent along with constraints conditions:
A+ QT =Aly!+Qy, ay=ayyp, by +hyynl =byyn+l+hy,
cy +1y2ntl =cyy2ntl 1, dy + 5,530 =d, y3n+ +5,, e +n x4t =e,y4ntl 40, (10)
fr+pixmt = foxmt 4 py gy @i = g + g
On solving Eq. (8), let p=3n then Eq. (8) changes to
A =Qux!+a,(Bn+1)(Bn+1-1)¢"2(x) P2 (x)+a; (Bn+1)¢f"1(x)g; (x)
+[by +hy |6 (x) + ey + L2t @ (x) +[dy + sy 3 o (x)
+[ey +mypnt o (x) +[ £ + pram n(n—1) 92 (x) 4% (x) (11)
+[fi+ praem Jngp = (x)y (%) +[ g1 + @i+ ](2n)(2n = 1) 2 (x) 4 (x)
+[g1 +ayx2](2n) g (x) ¢y (x) =
Balancing ¢{"1(x)¢;(x) with ¢f"(x) in Eq.(11) gives N=2/n, n#1. Using the
transformation
¢ (x)=V2/n(x), (12)
where V(x) is a new function. On substituting (12) into Eq.(11). Then Eq.(11) becomes
A+ DV 4(x)V'2(x)+AV5(x)V" (%) +A,V2(x)+ A5V 4(x)
+AgV6(x)+AV8(x)+AgV'2(x)+AgV (x)V"(x)+ AoV 2(x)V'2(x) (13)
+A,V3(x)V"(x)=
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where

Ay =—(A1+Qux1), Az=2%(3n+1){—2”2+5’;+2"2]

n
Ag=dy +sy 3, A, =ey +nyyintl, (14)

Ag :2(1_%)[f1 +pr ], Do =2[fi +prym],

Ay = 4(%+1)(%_1)[91 +q 2], Ay =4{gy +qu 2],

Next, we will construct the solitons of Egs. (2) and (3) by implementing the integration
scheme in the next section.

4. The enhanced direct algebraic approach
Based on the enhanced direct algebraic method [5], we presume that Eq. (13) has the formal

solution:
N . .
V(x)=a0+2{aj Fi(x)+B; F—J(x)} , (15)
i=1
where ag,a;,B; (j=1,.,N) are arbitrary constants, provided af + ff #0, while F(x) is the
solution of the equation:

F’Z(x):iLl Fi(x), (16)

1=0
where L; (j=0,1,2,3,4) are constants, provided L, #0. Balancing V5(x)V"(x) and V8(x)

in Eq. (13), we get the balance number N=1. Now, Eq. (13) has the formal solution:

V(x):a0+a1F(x)+%, (17)

where ay,a; and pB; are constants to be determined, provided af+ B #0. Substituting
Eq. (17) along with Eq. (16) into Eq. (13) and setting all the coefficients of FJi (5)(F’(§))jz,
(j1=-8,..-1,0,1,2,..,8, j, =0,1) to zero, we obtain the system of algebraic equations:

F8(£):  Ajaf +afly(A;+243)=0,

F7(£):  8Asagal +a16L3(A2 +%A3)+2a0a15L4(2A2 +5A4)=0,

Fo(&): AqgottLy +afly (Az+ Ay)+28Asa8af +8A; Bia] + 507 BiLy (A, +5A3)

F5(&): aflzagt+afl, (A2+%A3 )ASaf + 6060007 + 56,0803 + %aflgA11
+aogat PiLy (2y+10a5) + 4odafLy (ag+10ag) + 4adod Ly (ay+5a3)
+ 20007 Ly (4ag+583) + 5670307 + 611 003 Ly +00F Ly + 0Ly g
+20ag Braga3 + 201903 Ly 219=0,

continued on the next page
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F4(&):

F3(Zj):

Fz(é):

Fo(&):

F-1(&):

F-2(&):

F—3(§):

+a107 +asort +agLyod + ada?l, (10ag+ay ) + 6411 Lo By
+28100007 Ly + 38y, g0t (a0L4 +%0‘151L3 =0,
1

5 5 1
+201 P11y ng—20504 Ly B4 +E“12 Bilyag+ E%ﬂﬂf%ﬁ}“l“&h%
+605090 By + 12000801 By +ag03 + 4n,0004 BrLy +a1 00 + 0 ns+ad ag
+agafLy +ay BELy — 2050600 By Ly + 2850 By + 68702 BE + 20850504 By
1 1
+30sg00f B + EﬂlaglsA4+agA7+anﬁllsA9= 0,
+A8L4ﬂ% + a%LOﬂl (—A3+3A4 ) + allfzﬁlz (—A3+3A4_) +A9aglfzﬂ1
+2A4a0ﬂ1 = O,
3 3

7 (18)

1
+p7Ls (A2+EA3 ) +agly B +3as0g B + 20090, Lo By (—2g+223) = 0,

+ouy BELy (—ag+4ag ) + 2000 B Ly ag +40to B3 a7+ B3
+ag BELy +2p1Ly =0,

3

1
+oo BELy (ag+4es) + Bl (A2+EA3 ) +agLy B +3ascro B
3
1
Seg 57 (203 + a1 By ) + o BELy (ageg) + BELy (ay+3es)
+6260001 By + 1207080, By +ag03 + 4,000 B Ly

continued on the next page
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F4(&): a B+ Bl (A2+%A3) + BELy (ag+2a3) + BELy (A2+%A3)
+5ag00BF + 0t BELy (a9+4ag) + 20001 Lo By (—ay+223) =0,
F-5(&): Pllzaptafly (AZJF%% )A5ﬁ12 +6850037 +568703 7
+hog oLy (ay+10a3) +4ad L, (2,+1043)
+4oda3L, (ay+5a3)+ 2000 7Ly (429+5a3 ) + 56,03 B7
+6a11 007 Ly +25 BELy + PELy g
+200g0110t0 37 + Zaoﬁf’L4A10+%ﬂflsA11: 0,

+PP ag+2B{ Lysyy

3

F-8 (é) : A7ﬁ18 + ﬂ16L0 (A2+2A3 ) =0,

(18)

Now, let us discuss the following cases for the algebraic system Egs. (18), which can be

solved using Maple to discover the unknown parameters in Eq. (13).

Case-1:Ifweset Ly= L, = L3;=0, in the algebraic system Egs. (18) and by using the Maple,

then we have the results

ﬂlz(),al: 24’A3'L2:— O?Z ,
7 1

with constraint conditions:

- 3Ly U agLy(4s9-3s1108)
a2 P 2 2a? ’
_ Ly (3A3(Z61' - 4A110{g +A9) _ Ly (4A30lg —A11)
& 20 » o 207 '
A= ——=, Ag=——,

8 2 10 2

When L, >0, Ly <0 and a;23>0. Then Egs. (2) and (3) have bright soliton solutions:

2
2021, n
q(x,t):{a({lh/fsech {—LZA‘XH eilt,
a1
2
202L n
r(x,t):xlao(1+x/§sech ’_LZA}XH eilt,
ajg

provided ¢ >0. The solutions (21)-(22) exist under the constraint conditions (20).

and

(19)

(20)

(21)

(22)
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Case-2: If we set L = L22/4L4, L = L;=0, in the algebraic system Egs. (18), then we have

the results:
L, (20+2n

a7

with constraint conditions:

o _aflhsg o Ly (afLyag+4agLy +4agLy)
Ty, i, :
’ 4L,0f ’

2 2

2
a1

When L, >0,L, <0,a;( 2y+223) <0 . Then Egs. (2) and (3) have the dark soliton solutions:

2
L 2
x,t)= —2(A2+ A3)tanh‘[—L—Zx nem, (25)
2A7 2
2
r(x t): Mtanh _ﬁx nel‘lt (26)
HmE 28, 2 '

Also, Egs. (2) and (3) have singular soliton solutions:

2
q(x,t)z{ /Mcoth /—hx}nem, (27)
25 2
2
:Z|: Mcoth _L_ZX:|nel'/‘f.t. (28)
25 V 2

The solutions (25)-(28) exist under the constraint conditions (24).
Case-3:If we set L, = L; =0, in the algebraic system Egs. (18), then we have the following:

m%(l —m%)L2
(2m}-1)L,

and

and

(I) When L, = , 0<my <1, we get

208 L,m? (m} —1)
Bt(2mi —1)2
where m; is the modulus of Jacobi elliptic functions, with constraint conditions:
~ 303 Lyag| 8Bmf —8m? +1] _ 6maf _Anof
- a(2mi — 1y CRTTTL ST,
Ly| —24mfad ag +16mf ag+24mfod sy —16mf ag+3aq; af +4ag |
42m2 —1)2 '
_ 12a8s;(8mf —8m} + 1)+ 4G sy, Ly (—4mf +4md +1) +a9 L, (4mf — 4mi +1)
4a@(2m2 —1)2

a;=0,L,= (29)

’

A4_=

(30)

Ag

)’

__16A7a6} —A11L2 A 3 __3A11

- ) BT T T, MOT T4
@ 0 27 T 2
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Now, Egs. (2) and (3) have the Jacobi elliptic doubly periodic type soliton solutions:

1+ 1 "
a(xt)=|a| | (2m-1) (L || e, (31)
2(mz-1) " (\2mi-1"""
and
1+ 1 n
r(xot)=x|a| |_(2mi-1) ([T )] e, (32)
2(mz-1) " (\2mZ-1""""

provided L, > 0,(2m% —l)l2 >0, oy >0. The solutions (31), (32) exist under the constraint
conditions (30).
(1-m})3

II) When L, =——*=
( ) 0 [2—m%]2L4

, 0<my <1, we get

~ 2a§L2(m% —1)

a,=0, L,= , 33
1 4 ﬂlz(m% _2)2 ( )
with constraint conditions:
3agLyagmit 627008 4ng0f
M= 2 ) 2= ) A3: )
4mz —2)2 L,
L, | —3mfad ayy+4mf ag—16mf ag+16a; |
" g -2 | (34)
12miaf a;—4od a4 Ly (mf +4m? + 1) +agLy (mf —4m? + 4)
57 4o (m? —2)2 '
Lesyag —anly __ 3% __3an
ag T T
Now, Egs. (2) and (3) have the Jacobi elliptic doubly periodic type soliton solutions:
1+ 1 n
q(xt)=| e _ mi(mf -2y dn Ly xm eilt, (35)
22-mf)(mf-1) " (\2-mg !
and
1+ 1 &
r(x,t)=x|ay _ mi(mf -2y dn L . eilt, (36)
2(2-m2)(m?-1) 2-m2" !

provided L4>O,(2—m%)L2>O, oy >0. The solutions (35)-(36) is existed under the

constraint conditions (34).
272
mil5

II1) When Lyj=——12
(m 07 m2+1)2L,

, 0<my <1, we get
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B3Ly(mf +2m? +1)

with constraint conditions:
o 3Ly s9(mf —2m} +1) L 12a,mia
! 8m? © BaLy(mf+2mi+ 1)
8aymiad
A= )
5 pELy(mp+2m?+1)
. [ 6miarg (40 ag+ag)(mf —2mf +1)+ BELyag(mf +4m§ + 6mi + 4m? +1) | G8)
* 2m2a2 (mf +2m? +1) ’
miaf a;(104mf +304mg +104)+32miaf a,(mf +2m? +1)
+BELyag(m +4m§ +6m¢ +4mf +1)
8miag (mf +2mf + 1) ’
o 309 _ 12miad (4ag0f +26) o 8miad (4a,08 +ag )
2" 7 gLy (mtvzmi 1) M 2L, (md+2m? +1)
Now, Egs. (2) and (3) have the Jacobi elliptic doubly periodic type soliton solutions:
2
1+ V2 "
q(xt)=| g mi +2mf +1 BPLy(mi +2m? +1)X . eilt, (39)
(m2+1) 2a3m2(m?+1) "1
and
1+ V2 8
r(x,t)=x|ay mf +2m? +1 ﬂlzL4(mf+2m%+1)X . eizt,  (40)
(m2+1) 203m(mi+1) "

provided ¢, >0, L, >0,L, <0. In particular, when m; — 1~ in Egs. (39) and (40), we have

the singular soliton solutions:

q(x,t)z 2] tanh( ﬁlzL‘lXJ eit, (41)
and

1+

2
I n
r(xt)=x|ay tanh[ /ﬁf?}xJ eilt, (42)
ag

The solutions (41)-(42) exist under the constraint conditions (38).
Case-4: If we set Ly = L; =0, in the algebraic system Egs. (18), then we have the results:

ay (4oL, —3a
ﬁlzoy L2: 0( 0 42 1L3), (43)
2af
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with constraint conditions:

_ 3agag(2agLy _0‘113) _ 3
Al— 2 ) A2— )
4o 2
L% (—6a110Ly +3a110f0 L +8agagLy ~ 390113
4’_ )
4ot
_ 6A3a0 L4 3A3a0a113 8A11a0 L4 + 3A11a0a1143 + 2A9 L4_
40:1
8A3(Z5L4 - 3(10&1[3 - 2A11L4_ L4A3
= ) Ay = )
4o? 7 207
3 3a
A8= _%9: 21077 211 ’

Now, Egs. (2) and (3) have the straddled soliton solutions as the following:
(I) when L, >0, L, >0 we get bright-dark solitons:

aLysech? (\/ZL:XJ
2 L,L, tanh(\/zng + 15

SN

q(x,t)=¢| ay- eiit,

and

o Lysech?

/——\\

ij

2\/LyL, tanh( j+

j el/lt'
+

L

el/u‘

r(xt)=yelag-

also singular-singular solitons:

~ S

aqLycsch? (

q(x.t)=¢|ay+

~ ST

)
ayLycsch? £ )
R = mh(f o

2{L,L coth(

and

7\

elﬂ.t

where ¢ is a constant.
(I) when L, >0 and L; #0

et (Y, g
—LyL, {1 - tanh(\/zgxﬂz

q(x,t)=¢| %~ eiit,

and

(44)

(45)

(46)

(47)

(48)

(49)
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oy LyLssech? (szj 8

r(x}t) =y& oy — 2 2 eiﬂ.l‘, (50)
IZ-1L,L, [1 - tanh(\/gxﬂ
2
also,
oy LyLacsch? (l’l xj "
a(xt)=¢| 0+ | e, (s
Z-1LyL, {1 - coth(\/gxﬂ
2
and
alelgcschZ(\/Exj "
r(xt)=ye| %+t 2 eilt, (52)

3 -LL, {1 - coth(‘/zfz Xﬂz

Here, Egs.(49) and (50) describe bright-dark solitons, while (51) and (52) - singular-
singular solitons. The solutions (45)-(52) exist under the constraint conditions (44).
Case-5: If we set L; = L3 =0, in the algebraic system Eqs. (18), then we have the results:
Ly (2)+2a
ag=p1=0,a,= LaleZg) ) (53)
A7
with constraint conditions:
n=—ogtfly, a4=—a0afly—Ly(sgtag),
g0t Ly +afly (aygtayy )+ Ly (ag+229)

2 )
ay

(54)

ofLy(ap+ag)+1y (A1o+2A11)_
af

Now, Egs. (2) and (3) have the Weierstrass elliptic doubly periodic type solutions:

Q(x,t)={3 (A2+2A3)( o(x).92.9; H"ew, (55)

a7 680[(X)'92'93]+L2

and

e[ B L] -

47 680[()()'92'93]*]42
where L, >0,a;(ay+225) < 0. Also, Egs. (2) and (3) have

2
q(x,t){ —L4L°(A2+2A3)[6‘0[(X)'gz"g3j+L2H"eiflf, (57)

9a, ¢'[(x).92.95]
and
2
- L4L0(A2+2A3){680[(X)'92'93]+L2]:|n it 58
r(x,t) Zl: 9A7 So'[(X),gz,g3:| e’ G
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where L;>0,L, >0,A7(A2+2A3)<0. The solutions (55)-(58) are existed under constraint

conditions (54). The soliton solutions given in Egs. (55)-(58) exist only under specific
constraint conditions defined by Eq. (54). These constraints impose necessary mathematical
and physical conditions that must be satisfied for the solitons to be valid solutions within the
magneto-optic waveguide system.

A crucial aspect of these constraints is the relationship between the magneto-optic
parameters @Q; and @,, which is explicitly governed by Eq. (10). This relationship defines

how the two magneto-optic components interact and influence the soliton dynamics. The
presence of @; and @, in the system indicates that the external magnetic field directly
shapes the nonlinear optical response, affecting both the soliton stability and propagation
characteristics.

Furthermore, in Eq.(14), the parameter »; is explicitly dependent on @Q;. This

dependency highlights that the properties of the nonlinear wave solutions are not only
governed by the inherent material properties of the waveguide but are also externally
tunable through the applied magnetic field. This tunability is a crucial feature in magneto-
optic waveguides, allowing controlled manipulation of soliton characteristics.

For instance, the specific solutions (55)-(58) are valid under the constraint condition:

a=—agafLy as given in equation (54). This condition establishes a direct link between a;,
ag, aq,and Ly. The presence of »; in this expression indicates that the soliton existence

conditions are intricately connected to the magneto-optic parameter Q;. In other words,

changes in Q; and @, influence a;, which in turn determines whether the soliton solutions

remain valid.
Physically, this means that by adjusting the external magnetic field strengths (which
define Q; and @,), one can control the formation and properties of the quiescent optical

solitons in the waveguide. This dependency on Q; suggests that magneto-optic effects play a

fundamental role in soliton generation, offering a mechanism to regulate nonlinear pulse
dynamics externally.

In summary, the existence of soliton solutions (55)-(58) is inherently tied to the
constraint conditions defined in Eq. (54), which link the magneto-optic parameters @; and

Q, through Eq.(10) and influence the dispersion term »; in Eq.(14). This dependence

underscores the key role of magneto-optic interactions in shaping the nonlinear wave
dynamics in the system, making these solitons highly tunable based on external magnetic
field adjustments.

5. Conclusions
The paper derived quiescent optical solitons for the first time in a magneto-optic waveguide

that was considered with nonlinear CD and came with generalized temporal evolution. The
SPM structure of the model stemmed from two sources, namely Kudryashov’s nonlinear
form of refractive index and dual forms of nonlocal nonlinearities. The intermediary cnoidal
waves gave way to quiescent optical solitons when the modulus of ellipticity approached
unity. The resulting solutions are a complete spectrum of quiescent optical solitons. The
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results are thus interesting, especially with their application to an optoelectronic device

apart from optical fibers. These lead to a very promising future. Later, the study can be

extended to additional optoelectronic devices such as fibers with Bragg gratings, fibers with

differential group delay, dispersion-flattened fibers, optical couplers, and optical

metamaterials, just to name a few. The results will be made available once they are

recovered and aligned with the pre-existing ones [23-31].
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Anomayin. Y yiii cmammi ompumyombsbcsi p0o38’s3KU CNOKIUHUX ONMUYHUX CO/IMOHI8, ujo
BUHUKAIOMb Yy MAZHIMO-ONMU4HUX Xe8useeodax, siKi 36epizaromb dopmy camogazosoi
Mmodysasyii Kydpsswoea 6 no€dHaHHi 3 y3a2a/bHeHO (HOpMOK HEJ0KA/AbHOI HeaiHiliHocmi.
Modenbs makox 8paxosye HeAiHilIHy XxpomamuuHy duchepcito ma posaasdaemucs 3
YPaxy8aHHsAM y3azanbHeHoi yacosoi egosoyii. 3a80sKU 800CKOHA/NEHOMY NPSAMOMY
anzebpaiyHomy memody cmaao MOMCAUBUM OMPUMAHHSI MAKUX cOAimoHi8. Takum 4uHomM,
nosHull cnekmp co/imoHie 8i0H0BAHEMBCS 3a JONOMO20H0 NPOMINCHUX eAinmu4HUX yHKYIl
AKko6i, a makodc eainmuuHux @yHkyiii Beliepwumpaca. Takoxc nepepaxosaHi napamempuyHi
06.MedceHHs1 0151 ICHY8AHHS MAKUX COJIIMOHI8.

Kawouoei caoea: conimonu, anzebpaivHuil Memod. KHoidanbHI xgui
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