Ukrainian Journal of Physical Optics
2025 Volume 26, Issue 1
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

OPTICAL EDGE DISLOCATION GENERATED WITH THE NEMATIC θ-CELL
O. Krupych, T. Dudok, I. Skab, Yu. Nastishin, Z. Hrabchak, Ye. Ryzhov, O. Buluy, P. Zelenov, V. Nazarenko, O. Kurochkin and R. Vlokh
Author Information
1,2O. Krupych
, 1T. Dudok
,
1I. Skab
,
3Yu. Nastishin
,
3Z. Hrabchak
,
3Ye. Ryzhov
,
4O. Buluy
,
4P. Zelenov
,
4,5V. Nazarenko
,
4,5O. Kurochkin
,
1*R. Vlokh
,
1Vlokh Institute of Physical Optics, Ivan Franko National University of Lviv, 23 Dragomanov Str., Lviv 79005, Ukraine
2Department of Optoelectronics and Information Technologies, Ivan Franko National University of Lviv, 107 Tarnavskogo Str., Lviv 79017, Ukraine
3Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Str., Lviv 79012, Ukraine
4Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., Kyiv 03028, Ukraine
5Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
*Corresponding author: vlokh@ifo.lviv.ua




















2Department of Optoelectronics and Information Technologies, Ivan Franko National University of Lviv, 107 Tarnavskogo Str., Lviv 79017, Ukraine
3Hetman Petro Sahaidachnyi National Army Academy, 32 Heroes of Maidan Str., Lviv 79012, Ukraine
4Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., Kyiv 03028, Ukraine
5Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
*Corresponding author: vlokh@ifo.lviv.ua
Ukr. J. Phys. Opt.
Vol. 26
,
Issue 1 , pp. 01064 - 01072 (2025).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2025.01064
ABSTRACT
An optical edge dislocation is visualized as a shift of interference fringes in the Mach-Zehnder interferograms of the wavefront of a laser beam behind a nematic θ-cell with the circular and linear planar alignments of the nematic director on the opposite substrates. Using the approach of differential Jones matrices we establish that the half-period shift of the interference fringes addresses the π optical phase shift in the domains with the opposite handedness of the director twist on both sides of the nematic disclination separating these domains
Keywords:
optical edge dislocation, optical vortex, nematic θ-cell, nematic q-plate, enantiomorphic domains, optical phase shift
UDC:
535.4, 535.5
- Grier, D. G. (2003). A revolution in optical manipulation. Nature, 424(6950), 810-816.
doi:10.1038/nature01935 - Sit, A., Fickler, R., Alsaiari, F., Bouchard, F., Larocque, H., Gregg, P., Yan, L., Boyd, R.W., Ramachandran, S., & Karimi, E. (2018). Quantum cryptography with structured photons through a vortex fiber. Optics Letters, 43(17), 4108-4111.
doi:10.1364/OL.43.004108 - Boschi, D., Branca, S., De Martini, F., Hardy, L., & Popescu, S. (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 80(6), 1121.
doi:10.1103/PhysRevLett.80.1121 - Quabis, S., Dorn, R., Eberler, M., Glöckl, O., & Leuchs, G. (2000). Focusing light to a tighter spot. Optics Communications, 179(1-6), 1-7.
doi:10.1016/S0030-4018(99)00729-4 - Krenn, M., Handsteiner, J., Fink, M., Fickler, R., Ursin, R., Malik, M., & Zeilinger, A. (2016). Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences, 113(48), 13648-13653.
doi:10.1073/pnas.1612023113 - DiVincenzo, D. P. (1995). Quantum computation. Science, 270(5234), 255-261.
doi:10.1126/science.270.5234.255 - Bazhenov, V. Y., Vasnetsov, M. V., & Soskin, M. S. (1990). Laser beams with screw dislocations in their wavefronts. JETP Lett., 52(8), 429-431.
- Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M., & Woerdman, J. P. (1994). Helical-wavefront laser beams produced with a spiral phaseplate. Optics Communications, 112(5-6), 321-327.
doi:10.1016/0030-4018(94)90638-6 - Marrucci, L., Manzo, C., & Paparo, D. (2006). Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 96(16), 163905.
doi:10.1103/PhysRevLett.96.163905 - Skab, I., Vasylkiv, Y., Savaryn, V., & Vlokh, R. (2011). Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. JOSA A, 28(4), 633-640.
doi:10.1364/JOSAA.28.000633 - Skab, I., Vasylkiv, Y., Zapeka, B., Savaryn, V., & Vlokh, R. (2011). Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. JOSA A, 28(7), 1331-1340.
doi:10.1364/JOSAA.28.001331 - Skab, I., Vasylkiv, Y., Smaga, I., & Vlokh, R. (2011). Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Physical Review A, 84(4), 043815.
doi:10.1103/PhysRevA.84.043815 - Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. B., & Capasso, F. (2017). Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358(6365), 896-901.
doi:10.1126/science.aao5392 - Ostrovsky, A. S., Rickenstorff-Parrao, C., & Arrizón, V. (2013). Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator. Optics Letters, 38(4), 534-536.
doi:10.1364/OL.38.000534 - Huang, Y. H., Li, M. S., Ko, S. W., & Fuh, A. Y. G. (2013). Helical wavefront and beam shape modulated by advanced liquid crystal q-plate fabricated via photoalignment and analyzed by Michelson's interference. Applied Optics, 52(26), 6557-6561.
doi:10.1364/AO.52.006557 - Clark, N. A. (1985). Surface memory effects in liquid crystals: Influence of surface composition. Physical Review Letters, 55(3), 292.
doi:10.1103/PhysRevLett.55.292 - Marrucci, L., Manzo, C., & Paparo, D. (2006). Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation. Applied Physics Letters, 88(22).
doi:10.1063/1.2207993 - Krupych, O., Dudok, T., Skab, I., Nastishin, Yu., Hrabchak, Z., Chernenko, A., Buluy, O., Zelenov, P., Nazarenko, V., Kurochkin, o., Vlokh, R. (2025). Electric field controlled switching of an optical vortex charge with a liquid crystal cell. Optics Communication. 579, 131593.
doi:10.1016/j.optcom.2025.131593 - Stalder, M., & Schadt, M. (1996). Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters, 21(23), 1948-1950.
doi:10.1364/OL.21.001948 - Suh, S. W., Joseph, K., Cohen, G., Patel, J. S., & Lee, S. D. (1997). Precise determination of the cholesteric pitch of a chiral liquid crystal in a circularly aligned configuration. Applied Physics Letters, 70(19), 2547-2549.
doi:10.1063/1.118916 - Vasnetsov, M. V., Kasyanyuk, D. S., Terenetskaya, I. P., Kapinos, P. S., & Slyusar, V. V. (2013). Disclination line in θ-cell as an indicator of liquid crystal chirality. Molecular Crystals and Liquid Crystals, 575(1), 57-63.
doi:10.1080/15421406.2013.766945 - Kurochkin, O., Nazarenko, K., Tereshchenko, O., Golub, P., & Nazarenko, V. (2023). The helical twisting power of chiral dopants in lyotropic chromonic liquid crystals. Liquid Crystals, 50(1), 110-120.
doi:10.1080/02678292.2022.2114030 - Nye, J. F., & Berry, M. V. (1974). Dislocations in wave trains. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 336(1605), 165-190.
doi:10.1098/rspa.1974.0012 - Soskin, M. S., Vasnetsov, M. V., & Basistiy, I. V. (1995, November). Optical wavefront dislocations. In International Conference on Holography and Correlation Optics (Vol. 2647, pp. 57-62). SPIE.
doi:10.1117/12.226741 - Basistiy, I. V., Soskin, M. S., & Vasnetsov, M. V. (1995). Optical wavefront dislocations and their properties. Optics Communications, 119(5-6), 604-612.
doi:10.1016/0030-4018(95)00267-C - Li, F., Buchnev, O., Cheon, C. I., Glushchenko, A., Reshetnyak, V., Reznikov, Y., Sluckin, T.J. & West, J. L. (2006). Orientational coupling amplification in ferroelectric nematic colloids. Physical Review Letters, 97(14), 147801.
doi:10.1103/PhysRevLett.97.147801 - Domański, A., Budaszewski, D., Sierakowski, M., & Woliński, T. (2006). Depolarization of partially coherent light in liquid crystals. Opto-Electronics Review, 14(4), 305-310.
doi:10.2478/s11772-006-0041-x - Dudok, T., Skab, I., Mys, O., Krupych, O., Nastishin, Yu. A., Kurochkin, O., Nazarenko, V., Ryzhov, Ye., Chernenko, A. D., & Vlokh R. (2023). Optical vector vortices generated with circularly planar and circularly hybrid nematic cells. Ukrainian Journal of Physical Optics, 24(1), 22-45.
doi:10.3116/16091833/24/1/22/2023 - Nastyshyn, S. Y., Bolesta, I. M., Tsybulia, S. A., Lychkovskyy, E., Yakovlev, M. Y., Ryzhov, Y., Vankevych, P. I. & Nastishin, Y. A. (2018). Differential and integral Jones matrices for a cholesteric. Physical Review A, 97(5), 053804.
doi:10.1103/PhysRevA.97.053804 - Nastyshyn, S. Y., Bolesta, I. M., Tsybulia, S. A., Lychkovskyy, E., Fedorovych, Z. Y., Khaustov, D. Y., Ryzhov, P. I. Vankevych, & Nastishin, Y. A. (2019). Optical spatial dispersion in terms of Jones calculus. Physical Review A, 100(1), 013806.
doi:10.1103/PhysRevA.100.013806 - Ditchburn, R.W. (1953). Light. Blackie & Son Limited, Hardcover.
-
На основі зміщення інтерференційних смуг на інтерферограмах Маха-Цендера нами виявлена крайова дислокація оптичного хвильового фронту лазерного пучка, який поширюється через нематичну θ–комірку з круговим і лінійним планарним розташуванням нематичного директора на протилежних підкладках. Використовуючи підхід диференціальних матриць Джонса, встановлено, що півперіодний зсув інтерференційних смуг відповідає зсуву фаз рівному π в областях із протилежним напрямком повороту директора, тобто по різні боки від нематичної дисклінації, що розділяє ці області.
Ключові слова: крайова дислокація оптичного хвильвого фронту, оптичний вихор, нематична θ–комірка, нематична q-пластинка, енантіоморфні домени, зсув фаз
Ключові слова: optical edge dislocation, optical vortex, nematic θ-cell, nematic q-plate, enantiomorphic domains, optical phase shift
© Ukrainian Journal of Physical Optics ©