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Abstract. An optical edge dislocation is visualized as a shift of interference fringes in the Mach-Zehnder 
interferograms of the wavefront of a laser beam behind a nematic-cell with the circular and linear planar 
alignments of the nematic director on the opposite substrates. Using the approach of differential Jones 
matrices we establish that the half-period shift of the interference fringes addresses the π optical phase shift in 
the domains with the opposite handedness of the director twist on both sides of the nematic disclination 
separating these domains. 
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1. Introduction 
The singular beams bearing optical vortices have become an intriguing subject of study in 
recent decades. The interest of researchers in optical vortices is caused by their application 
in novel branches of optical technologies such as optical trapping and manipulation of the 
microparticles [1], quantum cryptography [2], quantum teleportation [3], light focusing 
below the diffraction limit [4], multiplexing and demultiplexing in the transmission of 
information [5], quantum computing [6], etc. These applications require developing simple 
and inexpensive methods of generating optical vortices. At least, the following known 
methods and tools for generating the beams bearing orbital angular momentum (OAM) can 
be listed at present: diffraction method on the computer-synthesized forked holograms [7], 
spiral phase plates [8], q-plates [9], crystal optical method under application of non-uniform 
fields [10-12], nanoscale metasurfaces [13], spatial light modulators [14], etc. Among them, 
probably the easiest in fabrication and most widely used are q-plates. A q-plate can be 
fabricated as a nematic liquid crystal (LC) cell doped with an azo-dye using the photo-
alignment technique while rotating both the cell and linear polarizer [15]. A simple and 
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cheap technique for fabricating the LC cells with surface alignment singularities proposed in 
[16] does not require such expensive/laborious techniques as photo-lithography or polymer 
photo-alignment. As reported in [17], a q-plate can be produced using a nematic LC cell 
assembled of two circularly rubbed substrates.  

A common drawback of available q-plates is that their design concepts do not imply 
switching the optical vortex charge. In contrast, our recent work [18] demonstrates that the 
topological charge of an optical vortex can be reversibly switched from |l| = 1 to |l| = 2 and back 
by an applied voltage to the so-called nematic –cell as a q–plate, while still employing techno–
logically simple surface rubbing alignment to form nematic defects. The -cell [19-22] is called in 
[18] a CL cell for the reason that it is assembled from rubbed polymer-covered substrates that 
provide circular (C) and linear (L) planar alignment of the nematic director. As shown in [18], 
though for a nematic point defect of the topological strength s=+1 formed due to the circular 
rubbing of the substrate one expects the generation of the optical vortex of the topological charge 
|l| = 2, because of the optical activity due to the nematic director twist produced by the difference 
in the alignment at the opposite substrate surfaces, the vortex charge is reduced to |l| = 1. 
Application of the voltage between the substrates reorients the nematic director in the bulk 
towards the cell normal direction, consequently eliminating the director twist, vanishing the 
optical activity, and thereby switching the vortex charge from |l| = 1 to |l| = 2 [18].  

However, this is not the end of the story. Since by its symmetry the nematic is achiral, 
both signs of the director twist are energetically equivalent and allowed, the nematic sample 
in the –cell splits into two domains with the opposite directions of the director twist. In 
nematics, an expected domain wall reduces to a line disclination, which on the polarization 
optical microscopy (POM) texture is observed parallel to the rubbing direction of the 
opposite substrate (Fig. 1) along the rubbing circles diameter. Our Mach-Zehnder 
interferograms shown in Figs. 1b, 2a,b indicate that the disclination line visible in Fig. 1b 
forms an edge dislocation in the laser beam behind the –cell. In the terminology, introduced 
by Nye and Berry [23] (see also [24,25]) wavefront dislocations in a laser beam can be of one 
of the three main types: a point edge dislocation (localized interference fringe in terminology 
[23]), screw dislocation and infinitely extended edge dislocation visualized as a nonlocalized 
interference fringe [23]. The interference pattern observed for the –cell in Figs. 1b, 2a,b 
visualizes the very such an optical edge dislocation.  

The aim of this paper is to establish the origin of the optical edge dislocation observed 
for the –cell as a nonlocalized interference fringes in the Mach-Zehnder interferograms. We 
show that the half-period shift in the interference patter in Figs. 1b, 2a,b, per se revealing the 
optical edge dislocation, results from the optical phase difference of  between the waves 
propagating in the domains with the opposite director twist (enantiomorphic domains).  

2. Experimental methods 
In our experiments the cells of the thicknesses d=5 and ~20 µm were filled with commercial 
nematics MLC6609 and 6CHBT; both from Merck with the birefringence values 0.077 [26]) 
and 0.15 [27]).The nematic 6CHBT shows positive dielectric anisotropy while for MLC6609 it 
is negative. 

The polarimetric images have been obtained using a collimated beam and the LC cells 
inserted between crossed linear polarizers. To visualize the optical singularities of light 
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beams transmitted through the studied LC cells, we used the interference patterns formed by 
a Mach–Zehnder interferometer in the manner, described in our recent paper (Ref. [28]). A 
studied sample was placed into the test arm of the interferometer between the crossed 
circular polarizers in order to achieve a pure vortex mode. The circular polarizers were 
assembled of linear polarizers aligned parallel to each other and quarter-wave plates with 
their optic axes at 45   and 45   with respect to the polarizers axes. In another 
interferometer arm, the reference arm, a divergent light beam is formed. The wide 
collimated beam of ~ 15 mm aperture was transmitted through the sample. The spherical 
wavefront of the wave propagated in the reference arm was formed using the positive lens 
with the focal length of 1 m. Resulting interference patterns for the vortex beams were 
recorded with a CCD camera.   

The AC voltage with a root mean square values in the range of 0-10 V and frequency 
f=1 kHz were applied to the inner sides of substrates covered with a conducting layer of 
indium tin oxide for the cells filled with 6CHBT. Because of the negative dielectric anisotropy, 
there is no reason to apply such a transverse voltage to the MLC6609 cells. To produce the 
planar (parallel to the substrate surface) director alignment the conducted layers were 
covered with the polyimide layer PI2555 (from Nissan Chemicals). To produce the C and 
unidirectional L alignments of the director the polymer layers on the substrates were 
respectively circularly and unidirectionally mechanically rubbed. 

3. Results and discussion  
To establish the origin of the optical edge dislocation visualized in Figs. 1b, 2a,b one has to 
derive the analytical expression for the electric field of the light waves passing through the 
enantiomorphic domains separated by line disclination seen in Fig. 1a. The form of the light 
wave behind a twisted nematic (also called the cholesteric, preferentially for submicron 
pitches) can be found in the approach of differential Jones matrices for a cholesteric 
developed in [29,30]. In the framework of Jones calculus, the light wave exiting the analyzer 
in the test arm of the interferometer can be found as follows: 

  /4 /4 0ME AQ J qz Q E    
 

,     (1) 

where E


 is the electric field vector of light wave, outgoing different domains in the vicinity 

of disclination line and exiting  the circular analyzer, 0 00E PE
 

 is the Jones vector of the 

normally incident linearly polarized light obtained from a light wave 00E


, exiting the 

polarizer P, /4Q    are the quarter-wave plates with their axis rotated respectively by / 4  

with respect to the polarizer such that /4 /4Q Q I    , where I is the unity matrix;  MJ qz  

is the Jones matrix of a nematic twisted with the wave number 2 /q p   (± stands for the 

twists of opposite handedness in different domains) in the Mauguine (subscript M) regime; z 
is the running coordinate along the normal to the cell such that for a normally incident light 
beam, z=0 at the entrance surface of the nematic and z=d at its exit. The analyzer A=P is a 
polarizer parallel to that of the entrance polarizer P. In the Mauguine regime, the integral 
matrix for a twisted nematic is of the form (see Eq. 61 in [29]):  

         0exp / 2MJ qz R qz N q R z       ,    (2) 
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being the differential Jones matrix of a nematic, in which n  and n  are the ordinary and 

extraordinary refractive indices measured for the light polarization set, respectively 
perpendicular ( ) and parallel (  ) to the nematic director and 
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,  (4) 

being the rotation Jones matrices. At / 2 / 1q p    , the Mauguine regime reduces to the 

so-called adiabatic regime [29].  

 (a) (b) 
Fig. 1. The MLC6609 -cell (d=20 μm,) viewed between crossed linear polarizers (a) and its Mach-
Zehnder interferogram (b) at zero applied voltage. 

 (a) (b) 
Fig. 2. Mach-Zehnder interference patterns with the dislocation for 5 µm (a) 6CHBT cell and (b) 
MLC6609 cells of 5 µm thickness at zero applied voltage. 

The disclination line separating the enantiomorphic domains is shown in Fig. 1a for the 
20 m MLC6609 cell. Quite similar polarimetric textures are observed for the 5 m MLC6609 
cell and 6CHBT cells of both (5 and 20 m) thickness values. For this reason these POM 
textures are not shown here. The single extinction brush (instead of two brushes) manifests 
the rotation of the polarization plane in the horizontal plane by / 2  angle on the different 

sides of the disclination line. It is seen in Figs. 1b and 2, that the interference fringes are 
mutually shifted by half the period of the interference pattern for the domains separated by 
the horizontal defect line.  
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For the rotation of the director by / 2  the pitch of the director twist 4p d  and, thus, 

for the -cells of  5μ md   and  20μ md   at 0.6328 m   for the direction along the 

disclination line one has / 0.03p   and 0.008, respectively. Therefore, for the -cells of 

both thicknesses one has / 1p   and thus  MJ qz  reduces to: 

    0N zaJ qz R qz e   ,     (5) 

where the subscript a denotes the adiabatic regime.  
The substitution of 
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in Eq. (1) gives:  

  2exp cos nzE i n q z 
 

        
   


 .   (7) 

At the exit of the twisted nematic one has z=d with / 2qd    on the different sides of the 

disclination line and thus 

  2exp cos
4z d

ndE i nd  
  

    
 




.   (8) 

Eq. (8) shows that the optical passes of the light waves E


  and E


 exiting the nematic 

domains with the opposite twist handedness respectively are / 4nd   and / 4nd  , thus 

differing by / 2 , which is equivalent to the phase difference of   and thereby inevitably 

forming a dislocation at the contact of their wave fronts when interfering with the light wave 
of the reference arm, except at the condition  2 1 / 2nd m    , for which one has 

 cos 2 1 / 2 0m      with 0, 1, 2,m   being an integer number. We believe that Fig. 3(a) 

in which the dislocation is hardly observed, corresponds to very such a case when in Eq. (8), 
 2 1 / 2nd m    . The value of the path difference D nd   of the eigenwaves can be 

varied by the application of the voltage to the cell. Under the applied voltage, the director of a 
nematic with the positive dielectric anisotropy Δε > 0 tends to realign along the field 
direction. As a result, the path difference D nd   transforms into:  

 2

0
sin

d

effD n z dz  ,     (9) 

where  is the angle between the nematic director and the light propagation direction, which 
is along the cell normal. Therefore, one can expect that reducing effD  with the applied 

voltage, one can escape the condition  2 1 / 2effD m   . 
The analysis of Fig. 3 shows that the disclination is poorly visible at zero applied voltage 

(Fig. 3a), but becomes better visible when the voltage increases above the threshold voltage 
(0.76 V) to 1.0V (Fig. 3b), and then on further voltage increase it is again hardly visible at 
1.9 V (Fig. 3c), and then again is better visible at 2.1 V (Fig. 3d). Here, poor/better visibility of 
the disclination should be understood as poor/better contrast of the interferogram as well as 
the absence/presence of the shift of the interference patterns below and above the border 
between the domains of opposite handedness. Eq. (8) suggests that due to the periodicity of 
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the factor  cos /nd  , the brightness of the pattern resulting of interference of 

orthogonal linearly polarized eigenwaves depend on the phase difference /nd    . 

When the phase difference is equal to  (2 1) / 2m     (m is the integer number), the 

expression in the right part of Eq. (8) is reduced to zero. Therefore, we are led to conclude 
that poor visibility of the disclination in the interferograms at zero applied voltage in the 
20 µm CL filled with 6CHBT is rather an incidence (Fig. 3a), while the disclination is clearly 
visible in the 20 µm CL cell filled with MLC6609 (Fig. 1(b)) as well as in 5 µm CL cells with 
6CHBT (Fig. 2(a)) and MLC6609 (Fig. 2(b)). 

 (a)    (b) 

 (c)    (d) 
Fig. 3. Mach-Zehnder interferograms for the 20 µm cell filled with the nematic 6CHBT at (a) 0 V,  
(b) 1.0V, (c) 1.9 V and (d) 2.1 V. 

Generally, the studied -cell can be considered as an optical medium, in which the 
linearly polarized light normally incident rotates by π/2 exiting the cell. In this case, 
mathematically, one can decompose the incident linearly polarized light into two waves with 
the opposite-handedness of circular polarization and the same amplitudes propagating 
through the sample with different velocities (see e.g. [31]). In this case, the angle of 
polarization plane rotation is determined as follows: 

1 1 1
2 C

r l

d c
v v




 
    

 
     (10) 

where rv  and lv  are the velocities of right-handed and left-handed waves, respectively, c is 

the speed of light in vacuum, and C  is the phase difference between these waves on the 

distance d. It is obvious from Eq. (10) that when the angle of polarization plane rotation is 
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equal to 2  , the phase difference between left and right-handed circular waves is 

c   . Therefore, if the circular incident wave is, e.g., left-handed in the domain with the 

right-handed twist structure, this wave is the fast wave, while in the left-handed domain, it is 
the slow wave. Thus, the interference of these waves with the reference wave is constructive 
in the first domain, while destructive in the second one. Such a generalized consideration can 
be a simple explanation for the half-period shift of interference fringes without going into 
details of light propagation within a twisted nematic. 

4. Conclusion 
In addition to an optical vortex, which is a screw dislocation in the wavefront of a laser beam 
behind a nematic-cell cell with the circular and linear planar alignment of the nematic 
director on the opposite substrates, an optical edge dislocation is generated and visualized as 
a shift of interference fringes in the in the Mach-Zehnder interferograms. While the optical 
vortex is formed when the laser beam passes through the nematic circular point defect, the 
optical edge dislocation appears in the place where the light hits the nematic disclination 
line, which separates the domains with the opposite handedness of the director twist. In the 
terminology introduced by Nye and Berry such an optical edge dislocation corresponds to a 
nonlocalized interference fringe on the interferogram. Using the Jones calculus approach we 
have established the origin of this optical edge dislocation. We prove that that the shift in the 
Mach-Zehnder interference fringes is due to the π phase shift, produced by the opposite 
handedness of the director twist in the domains separated by the nematic disclination.  
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Анотація. На основі зміщення інтерференційних смуг на інтерферограмах Маха-
Цендера нами виявлена крайова дислокація оптичного хвильового фронту лазерного 
пучка, який поширюється через нематичну –комірку  з круговим і лінійним планарним 
розташуванням нематичного директора на протилежних підкладках. 
Використовуючи підхід диференціальних матриць Джонса, встановлено, що 
півперіодний зсув інтерференційних смуг відповідає зсуву фаз рівному π в областях із 
протилежним напрямком повороту директора, тобто по різні боки від нематичної 
дисклінації, що розділяє ці області. 

Ключові слова: крайова дислокація оптичного хвильвого фронту, оптичний вихор, 
нематична –комірка, нематична q-пластинка, енантіоморфні домени, зсув фаз 
 


