Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 5


ISSN 1609-1833 (Print)

Dispersive Optical Solitons with Stochastic Radhakrishnan-Kundu-Lakshmanan Equation in Magneto-Optic Waveguides Having Power Law Nonlinearity and Multiplicative White Noise

1Elsayed M. E. Zayed, 2,3Khaled A. E. Alurrfi, 1Mona Elshater and 4,5Yakup Yildirim

1Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
2Department of Mathematics, Faculty of Science, Elmergib University, Khoms, Libya
3Department of Mathematical Sciences, The Libyan Academy, Tripoli, Libya
4Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey
5Department of Mathematics, Near East University, 99138 Nicosia, Cyprus

ABSTRACT

In this paper, we introduce a coupled system of the stochastic Radhakrishnan-Kundu-Lakshmanan equation in magneto-optic waveguides for the first time. Power law nonlinearity and multiplicative white noise in the Itô sense are incorporated into the system. The two integration algorithms used are the extended simplest equation approach and the improved Kudryashov’s approach. This study uses computer algebra systems to present dark, bright, and singular solitons.

Keywords: optical solitons, white noise, magneto-optics waveguides, Radhakrishnan-Kundu-Lakshmanan equation

UDC: 535.32

    1. Rabie, W. B., Ahmed, H. M., & Hamdy, W. (2023). Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas-Milovic Equation via Kudryashov's Law Using Extended F-Expansion Method. Mathematics, 11(2), 300. doi:10.3390/math11020300
    2. Vega-Guzman, J., Ullah, M. Z., Asma, M., Zhou, Q., & Biswas, A. (2017). Dispersive solitons in magneto-optic waveguides. Superlattices and Microstructures, 103, 161-170. doi:10.1016/j.spmi.2017.01.020
    3. Zayed, E. M., Alngar, M. E., & Shohib, R. M. (2023). Optical solitons in magneto-optic waveguides for perturbed NLSE with Kerr law nonlinearity and spatio-temporal dispersion having multiplicative noise via Itô calculus. Optik, 276, 170682. doi:10.1016/j.ijleo.2023.170682
    4. Zayed, E. M., Alurrfi, K. A., & Alshbear, R. A. (2023). On application of the new mapping method to magneto-optic waveguides having Kudryashov's law of refractive index. Optik, 171072. doi:10.1016/j.ijleo.2023.171072
    5. Kudryashov, N. A. (2019). A generalized model for description of propagation pulses in optical fiber. Optik, 189, 42-52. doi:10.1016/j.ijleo.2019.05.069
    6. Zayed, E. M., Alngar, M. E., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K., & Belic, M. R. (2020). Solitons in magneto-optic waveguides with Kudryashov's law of refractive index. Chaos, Solitons & Fractals, 140, 110129. doi:10.1016/j.chaos.2020.110129
    7. Arshed, S., & Arif, A. (2020). Soliton solutions of higher-order nonlinear schrödinger equation (NLSE) and nonlinear kudryashov's equation. Optik, 209, 164588. doi:10.1016/j.ijleo.2020.164588
    8. Biswas, A., Arnous, A. H., Ekici, M., Sonmezoglu, A., Seadawy, A. R., Zhou, Q., Mahmood, M. F., Moshokoa, S.P. & Belic, M. (2018). Optical soliton perturbation in magneto-optic waveguides. Journal of Nonlinear Optical Physics & Materials, 27(01), 1850005. doi:10.1142/S0218863518500054
    9. Asjad, M. I., Ullah, N., Rehman, H. U., & Inc, M. (2021). Construction of optical solitons of magneto-optic waveguides with anti-cubic law nonlinearity. Optical and Quantum Electronics, 53, 1-16. doi:10.1007/s11082-021-03288-x
    10. Zayed, E. M., Shohib, R. M., Alngar, M. E., Nofal, T. A., Gepreel, K. A., & Yıldırım, Y. (2022). Cubic-quartic optical solitons of perturbed Biswas-Milovic equation having Kudryashov's nonlinear form and two generalized non-local laws. Optik, 259, 168919. doi:10.1016/j.ijleo.2022.168919
    11. Zayed, E. M., Shohib, R. M., Gepreel, K. A., El-Horbaty, M. M., & Alngar, M. E. (2021). Cubic-quartic optical soliton perturbation Biswas-Milovic equation with Kudryashov's law of refractive index using two integration methods. Optik, 239, 166871. doi:10.1016/j.ijleo.2021.166871
    12. Zayed, E. M., Shohib, R. M., Alngar, M. E., Nofal, T. A., Gepreel, K. A., & Yıldırım, Y. (2022). Cubic-quartic optical solitons with Biswas-Milovic equation having dual-power law nonlinearity using two integration algorithms. Optik, 265, 169453. doi:10.1016/j.ijleo.2022.169453
    13. Biswas, A., Ekici, M., Sonmezoglu, A., & Belic, M. R. (2019). Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion. Optik, 181, 1028-1038. doi:10.1016/j.ijleo.2018.12.164
    14. Kudryashov, N. A. (2020). Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik, 206, 163550. doi:10.1016/j.ijleo.2019.163550
    15. Kudryashov, N. A. (2020). Solitary wave solutions of hierarchy with non-local nonlinearity. Applied Mathematics Letters, 103, 106155. doi:10.1016/j.aml.2019.106155
    16. Kudryashov, N. A. (2020). Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Applied Mathematics and Computation, 371, 124972. doi:10.1016/j.amc.2019.124972
    17. Kudryashov, N. A. (2019). A generalized model for description of propagation pulses in optical fiber. Optik, 189, 42-52. doi:10.1016/j.ijleo.2019.05.069
    18. Zayed, E. M., El-Horbaty, M., Alngar, M. E., & El-Shater, M. (2022). Dispersive Optical Solitons for Stochastic Fokas-Lenells Equation With Multiplicative White Noise. Eng, 3(4), 523-540. doi:10.3390/eng3040037
    19. Zayed, E. M., Shohib, R., Alngar, M. E., Biswas, A., Yıldırım, Y., Dakova, A., Alshehri, H. M. & Belic, M. R. (2022). Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus. Ukrainian Journal of Physical Optics, 23(1). doi:10.3116/16091833/23/1/9/2022
    20. Zayed, E. M., Shohib, R. M., & Alngar, M. E. (2023). Dispersive optical solitons in birefringent fibers for stochastic Schrödinger-Hirota equation with parabolic law nonlinearity and spatiotemporal dispersion having multiplicative white noise. Optik, 278, 170736. doi:10.1016/j.ijleo.2023.170736
    21. Zayed, E. M., Alngar, M. E., Shohib, R. M., Biswas, A., Yıldırım, Y., Triki, H., Moshokoa, S.P. & Alshehri, H. M. (2023). Optical solitons in birefringent fibers with Sasa-Satsuma equation having multiplicative noise with Itô calculus. Journal of Nonlinear Optical Physics & Materials, 32(01), 2350006. doi:10.1142/S0218863523500066
    22. Zayed, E. M., Alngar, M. E., & Shohib, R. M. (2022). Dispersive Optical Solitons to Stochastic Resonant NLSE with Both Spatio-Temporal and Inter-Modal Dispersions Having Multiplicative White Noise. Mathematics, 10(17), 3197. doi:10.3390/math10173197
    23. Khan, S. (2020). Stochastic perturbation of optical solitons having generalized anti-cubic nonlinearity with bandpass filters and multi-photon absorption. Optik, 200, 163405. doi:10.1016/j.ijleo.2019.163405
    24. Zayed, E. M., Alngar, M. E., Biswas, A., Asma, M., Ekici, M., Alzahrani, A. K., & Belic, M. R. (2020). Solitons in magneto-optic waveguides with Kudryashov's law of refractive index. Chaos, Solitons & Fractals, 140, 110129. doi:10.1016/j.chaos.2020.110129
    25. Zayed, E. M., Shohib, R. M., El-Horbaty, M. M., Biswas, A., Asma, M., Ekici, M., Alzahrani, A.K. & Belic, M. R. (2020). Solitons in magneto-optic waveguides with quadratic-cubic nonlinearity. Physics Letters A, 384(25), 126456. doi:10.1016/j.physleta.2020.126456
    26. Biswas, A. (2009). 1-soliton solution of the generalized Radhakrishnan, Kundu, Lakshmanan equation. Physics Letters A, 373(30), 2546-2548. doi:10.1016/j.physleta.2009.05.010
    27. Arshed, S., Biswas, A., Guggilla, P., & Alshomrani, A. S. (2020). Optical solitons for Radhakrishnan-Kundu-Lakshmanan equation with full nonlinearity. Physics Letters A, 384(26), 126191. doi:10.1016/j.physleta.2019.126191
    28. Zayed, E., Shohib, R., Alngar, M., Biswas, A., Yildirim, Y., Dakova, A., Moraru, L. & Alshehri, H. (2023, June). Dispersive Optical Solitons with Radhakrishnan-Kundu-Lakshmanan Equation Having Multiplicative White Noise by Enhanced Kudryashov's Method and Extended Simplest Equation. In Proceedings of the Bulgarian Academy of Sciences (Vol. 76, No. 6, pp. 849-862). doi:10.7546/CRABS.2023.06.04
    29. Biswas, A. (2018). Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis. Optik, 171, 217-220. doi:10.1016/j.ijleo.2018.06.043
    30. Yıldırım, Y., Biswas, A., Ekici, M., Triki, H., Gonzalez-Gaxiola, O., Alzahrani, A. K., & Belic, M. R. (2020). Optical solitons in birefringent fibers for Radhakrishnan-Kundu-Lakshmanan equation with five prolific integration norms. Optik, 208, 164550. doi:10.1016/j.ijleo.2020.164550
    31. Zayed, E. M., Shohib, R. M., Alngar, M. E., & Yıldırım, Y. (2021). Optical solitons in fiber Bragg gratings with Radhakrishnan-Kundu-Lakshmanan equation using two integration schemes. Optik, 245, 167635. doi:10.1016/j.ijleo.2021.167635
    32. Biswas, A., Ekici, M., Sonmezoglu, A., & Alshomrani, A. S. (2018). Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by extended trial function scheme. Optik, 160, 415-427. doi:10.1016/j.ijleo.2018.02.017
    33. González-Gaxiola, O., & Biswas, A. (2019). Optical solitons with Radhakrishnan-Kundu-Lakshmanan equation by Laplace-Adomian decomposition method. Optik, 179, 434-442. doi:10.1016/j.ijleo.2018.10.173
    34. Ganji, D. D., Asgari, A., & Ganji, Z. Z. (2008). Exp-function based solution of nonlinear Radhakrishnan, Kundu and Laskshmanan (RKL) equation. Acta Applicandae Mathematicae, 104, 201-209. doi:10.1007/s10440-008-9252-0
    35. Kudryashov, N. A. (2021). The Radhakrishnan-Kundu-Lakshmanan equation with arbitrary refractive index and its exact solutions. Optik, 238, 166738. doi:10.1016/j.ijleo.2021.166738
    36. Biswas, A., Yildirim, Y., Yasar, E., Mahmood, M. F., Alshomrani, A. S., Zhou, Q., Moshokoa. S.P. & Belic, M. (2018). Optical soliton perturbation for Radhakrishnan-Kundu-Lakshmanan equation with a couple of integration schemes. Optik, 163, 126-136. doi:10.1016/j.ijleo.2018.02.109
    37. Zayed, E. M., & Shohib, R. M. (2019). Optical solitons and other solutions to Biswas-Arshed equation using the extended simplest equation method. Optik, 185, 626-635. doi:10.1016/j.ijleo.2019.03.112
    38. Zayed, E. M., Gepreel, K. A., & Alngar, M. E. (2021). Addendum to Kudryashov's method for finding solitons in magneto-optics waveguides to cubic-quartic NLSE with Kudryashov's sextic power law of refractive index. Optik, 230, 166311. doi:10.1016/j.ijleo.2021.166311
    39. Zayed, E. M. E., Shohib, R. M. A., Alngar, M. E. M., Biswas, A., Yildirim, Y., Dakova, A., Alshehri, H. M., Belic, M. R. (2022). Optical solitons in the Sasa-Satsuma model with multiplicative noise via Itô calculus, Ukr. J. Phys. Opt., 23, 9-14. doi:10.3116/16091833/23/1/9/2022
    40. Bilige, S., Chaolu, T., & Wang, X. (2013). Application of the extended simplest equation method to the coupled Schrödinger-Boussinesq equation. Applied Mathematics and Computation, 224, 517-523. doi:10.1016/j.amc.2013.08.083
    41. Al-Amr, M. O., & El-Ganaini, S. (2017). New exact traveling wave solutions of the (4+1)-dimensional Fokas equation. Computers & Mathematics with Applications, 74(6), 1274-1287. doi:10.1016/j.camwa.2017.06.020
    42. Zayed, E. M., Shohib, R. M., & Al-Nowehy, A. G. (2018). Solitons and other solutions for higher-order NLS equation and quantum ZK equation using the extended simplest equation method. Computers & Mathematics with Applications, 76(9), 2286-2303. doi:10.1016/j.camwa.2018.08.027
    43. Wang, S. (2023). Novel soliton solutions of CNLSEs with Hirota bilinear method. Journal of Optics, 1-6. doi:10.1007/s12596-022-01065-x
    44. Kopçasız, B., & Yaşar, E. (2023). The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger's equation with new mechanisms. Journal of Optics, 52(3), 1513-1527. doi:10.1007/s12596-022-00998-7
    45. Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398. doi:10.1007/s12596-022-00963-4
    46. Thi, T. N., & Van, L. C. (2023). Supercontinuum generation based on suspended core fiber infiltrated with butanol. Journal of Optics, 52(4), 2296-2305. doi:10.1007/s12596-023-01323-6
    47. Li, Z., & Zhu, E. (2023). Optical soliton solutions of stochastic Schrödinger-Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity. Journal of Optics, 1-7. doi:10.1007/s12596-023-01287-7
    48. Han, T., Li, Z., Li, C., & Zhao, L. (2023). Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg-Landau equation with nonlinear chromatic dispersion in non-Kerr law media. Journal of Optics, 52(2), 831-844. doi:10.1007/s12596-022-01041-5
    49. Tang, L. (2023). Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas-Lenells equation. Journal of Optics, 1-10. doi:10.1007/s12596-023-01097-x
    50. Nandy, S., & Lakshminarayanan, V. (2015). Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions. Journal of Optics, 44, 397-404. doi:10.1007/s12596-015-0270-9
    51. Chen, W., Shen, M., Kong, Q., & Wang, Q. (2015). The interaction of dark solitons with competing nonlocal cubic nonlinearities. Journal of Optics, 44, 271-280. doi:10.1007/s12596-015-0255-8
    52. Xu, S. L., Petrović, N., & Belić, M. R. (2015). Two-dimensional dark solitons in diffusive nonlocal nonlinear media. Journal of Optics, 44, 172-177. doi:10.1007/s12596-015-0243-z
    53. Dowluru, R. K., & Bhima, P. R. (2011). Influences of third-order dispersion on linear birefringent optical soliton transmission systems. Journal of Optics, 40, 132-142. doi:10.1007/s12596-011-0045-x
    54. Singh, M., Sharma, A. K., & Kaler, R. S. (2011). Investigations on optical timing jitter in dispersion managed higher order soliton system. Journal of Optics, 40, 1-7. doi:10.1007/s12596-010-0021-x
    55. Janyani, V. (2008). Formation and Propagation-Dynamics of Primary and Secondary Soliton-Like Pulses in Bulk Nonlinear Media. Journal of Optics, 37, 1-8. doi:10.1007/BF03354831
    56. Hasegawa, A. (2004). Application of Optical Solitons for Information Transfer in Fibers-A Tutorial Review. Journal of Optics, 33(3), 145-156. doi:10.1007/BF03354760
    57. Mahalingam, A., Uthayakumar, A., & Anandhi, P. (2013). Dispersion and nonlinearity managed multisoliton propagation in an erbium doped inhomogeneous fiber with gain/loss. Journal of Optics, 42, 182-188. doi:10.1007/s12596-012-0105-x

    У цій статті вперше представлена зв'язана система стохастичних рівнянь Радхакришнана-Кунду-Лакшманана для магнітооптичних хвилеводів. У систему введено степеневу нелінійність і мультиплікативний білий шум у розумінні Іто. Для інтегрування системи використовуються два алгоритми: розширений метод найпростішого рівняння та удосконалений підхід Кудряшова. З використанням систем комп’ютерних розрахунків у цій роботі отримані розв’язки для темних, світлих та сингулярних солітонів.

    Ключові слова: оптичні солінони, білий шум, магнітооптичні хвилеводи, рівняння Радхакрішнана–Кунду–Лакшманана


© Ukrainian Journal of Physical Optics ©