Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 5
Bright and Dark Solitons in a (2+1)-Dimensional Spin-1 Bose-Einstein Condensates
1Nan Li, 1Quan Chen, 2Houria Triki, 3Feiyan Liu, 1,3Yunzhou Sun, 4Siliu Xu and 3Qin Zhou
1Hubei Province Engineering Research Center for Intelligent Micro-Nano Medical Equipment and Key Technologies, School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China, chenquan1977@126.com
2Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria
3Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430200, China, syz@wtu.edu.cn
4School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 5 , pp. S1060 - S1074 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.S1060
ABSTRACT
Keywords:
soliton, Hirota bilinear method, asymptotic analysis, Bose-Einstein condensates
UDC:
535.32
- Zhou, Q. (2022). Influence of parameters of optical fibers on optical soliton interactions. Chinese Physics Letters, 39(1), 010501. doi:10.1088/0256-307X/39/1/010501
- Zhou, Q., Zhong, Y., Triki, H., Sun, Y., Xu, S., Liu, W., & Biswas, A. (2022). Chirped bright and kink solitons in nonlinear optical fibers with weak nonlocality and cubic-quantic-septic nonlinearity. Chinese Physics Letters, 39(4), 044202. doi:10.1088/0256-307X/39/4/044202
- Soltani, M., Triki, H., Azzouzi, F., Sun, Y., Biswas, A., Yıldırım, Y., Alshehri, H. M. & Zhou, Q. (2023). Pure-quartic optical solitons and modulational instability analysis with cubic-quintic nonlinearity. Chaos, Solitons & Fractals, 169, 113212. doi:10.1016/j.chaos.2023.113212
- Gao, P., Wu, Z., Yang, Z. Y., & Yang, W. L. (2021). Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose-Einstein Condensates. Chinese Physics Letters, 38(9), 090302. doi:10.1088/0256-307X/38/9/090302
- He, J. T., Fang, P. P., & Lin, J. (2022). Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose-Einstein Condensates. Chinese Physics Letters, 39(2), 020301. doi:10.1088/0256-307X/39/2/020301
- Cornell, E. A., & Wieman, C. E. (2002). Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Reviews of Modern Physics, 74(3), 875. doi:10.1103/RevModPhys.74.875
- Bloch, I., Dalibard, J., & Zwerger, W. (2008). Many-body physics with ultracold gases. Reviews of Modern Physics, 80(3), 885. doi:10.1103/RevModPhys.80.885
- Sekh, G. A., Pepe, F. V., Facchi, P., Pascazio, S., & Salerno, M. (2015). Split and overlapped binary solitons in optical lattices. Physical Review A, 92(1), 013639. doi:10.1103/PhysRevA.92.013639
- Zhao, Y., Lei, Y. B., Xu, Y. X., Xu, S. L., Triki, H., Biswas, A., & Zhou, Q. (2022). Vector spatiotemporal solitons and their memory features in cold Rydberg gases. Chinese Physics Letters, 39(3), 034202. doi:10.1088/0256-307X/39/3/034202
- Ieda, J. I., Miyakawa, T., & Wadati, M. (2004). Exact analysis of soliton dynamics in spinor Bose-Einstein condensates. Physical Review Letters, 93(19), 194102. doi:10.1103/PhysRevLett.93.194102
- Pedri, P., & Santos, L. (2005). Two-dimensional bright solitons in dipolar Bose-Einstein condensates. Physical Review Letters, 95(20), 200404. doi:10.1103/PhysRevLett.95.200404
- Ding, C., Zhou, Q., Xu, S., Triki, H., Mirzazadeh, M., & Liu, W. (2023). Nonautonomous breather and rogue wave in spinor Bose-Einstein condensates with space-time modulated potentials. Chinese Physics Letters, 40(4), 040501. doi:10.1088/0256-307X/40/4/040501
- Feder, D. L., Pindzola, M. S., Collins, L. A., Schneider, B. I., & Clark, C. W. (2000). Dark-soliton states of Bose-Einstein condensates in anisotropic traps. Physical Review A, 62(5), 053606. doi:10.1103/PhysRevA.62.053606
- Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L. D., Castin, Y. & Salomon, C. (2002). Formation of a matter-wave bright soliton. Science, 296(5571), 1290-1293. doi:10.1126/science.1071021
- Denschlag, J., Simsarian, J. E., Feder, D. L., Clark, C. W., Collins, L. A., Cubizolles, J., Deng, L., & Phillips, W. D. (2000). Generating solitons by phase engineering of a Bose-Einstein condensate. Science, 287(5450), 97-101. doi:10.1126/science.287.5450.97
- Frantzeskakis, D. J. (2010). Dark solitons in atomic Bose-Einstein condensates: from theory to experiments. Journal of Physics A: Mathematical and Theoretical, 43(21), 213001. doi:10.1088/1751-8113/43/21/213001
- Chomaz, L., Baier, S., Petter, D., Mark, M. J., Wächtler, F., Santos, L., & Ferlaino, F. (2016). Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Physical Review X, 6(4), 041039. doi:10.1103/PhysRevX.6.041039
- Chin, C., Grimm, R., Julienne, P., & Tiesinga, E. (2010). Feshbach resonances in ultracold gases. Reviews of Modern Physics, 82(2), 1225. doi:10.1103/RevModPhys.82.1225
- Wu, B., Liu, J., and Niu, Q. (2002). Controlled generation of dark solitons with phase imprinting Physical Review Letters, 88, 034101. doi:10.1103/PhysRevLett.88.034101
- Fritsch, A. R., Lu, M., Reid, G. H., Piñeiro, A. M., & Spielman, I. B. (2020). Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates. Physical Review A, 101(5), 053629. doi:10.1103/PhysRevA.101.053629
- Rizvi, S. T., Seadawy, A. R., Farah, N., & Ahmad, S. (2022). Application of Hirota operators for controlling soliton interactions for Bose-Einstien condensate and quintic derivative nonlinear Schrödinger equation. Chaos, Solitons & Fractals, 159, 112128. doi:10.1016/j.chaos.2022.112128
- Xu, Y., Zhang, Y., & Wu, B. (2013). Bright solitons in spin-orbit-coupled Bose-Einstein condensates. Physical Review A, 87(1), 013614. doi:10.1103/PhysRevA.87.013614
- Wang, H., Zhou, Q., & Liu, W. (2022). Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation. Journal of Advanced Research, 38, 179-190. doi:10.1016/j.jare.2021.09.007
- Wu, X. Y., Tian, B., Qu, Q. X., Yuan, Y. Q., & Du, X. X. (2020). Rogue waves for a (2+ 1)-dimensional Gross-Pitaevskii equation with time-varying trapping potential in the Bose-Einstein condensate. Computers & Mathematics with Applications, 79(4), 1023-1030. doi:10.1016/j.camwa.2019.08.015
- Hu, X. H., Zhang, X. F., Zhao, D., Luo, H. G., & Liu, W. M. (2009). Dynamics and modulation of ring dark solitons in two-dimensional Bose-Einstein condensates with tunable interaction. Physical Review A, 79(2), 023619. doi:10.1103/PhysRevA.79.023619
- Gautam, S., & Adhikari, S. K. (2018). Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate. Physical Review A, 97(1), 013629. doi:10.1103/PhysRevA.97.013629
- De Izarra, G., Cerqueira, N., & De Izarra, C. (2011). Quantitative shadowgraphy on a laminar argon plasma jet at atmospheric pressure. Journal of Physics D: Applied Physics, 44(48), 485202. doi:10.1088/0022-3727/44/48/485202
- Chiacchio, E. R., & Nunnenkamp, A. (2019). Dissipation-induced instabilities of a spinor Bose-Einstein condensate inside an optical cavity. Physical Review Letters, 122(19), 193605. doi:10.1103/PhysRevLett.122.193605
- Kawaguchi, Y., & Ueda, M. (2012). Spinor bose-einstein condensates. Physics Reports, 520(5), 253-381. doi:10.1016/j.physrep.2012.07.005
- Nistazakis, H. E., Frantzeskakis, D. J., Kevrekidis, P. G., Malomed, B. A., & Carretero-González, R. (2008). Bright-dark soliton complexes in spinor Bose-Einstein condensates. Physical Review A, 77(3), 033612. doi:10.1103/PhysRevA.77.033612
- Tojo, S., Hayashi, T., Tanabe, T., Hirano, T., Kawaguchi, Y., Saito, H., & Ueda, M. (2009). Spin-dependent inelastic collisions in spin-2 Bose-Einstein condensates. Physical Review A, 80(4), 042704. doi:10.1103/PhysRevA.80.042704
- Wang, D. S., Shi, Y. R., Feng, W. X., & Wen, L. (2017). Dynamical and energetic instabilities of F= 2 spinor Bose-Einstein condensates in an optical lattice. Physica D: Nonlinear Phenomena, 351, 30-41. doi:10.1016/j.physd.2017.04.002
- Hao, R., Li, L., Li, Z., & Zhou, G. (2004). Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Physical Review E, 70(6), 066603. doi:10.1103/PhysRevE.70.066603
- Uchiyama, M., Ieda, J. I., & Wadati, M. (2006). Dark solitons in F=1 spinor Bose-Einstein condensate. Journal of the Physical Society of Japan, 75(6), 064002. doi:10.1143/JPSJ.75.064002
- Dąbrowska-Wüster, B. J., Ostrovskaya, E. A., Alexander, T. J., & Kivshar, Y. S. (2007). Multicomponent gap solitons in spinor Bose-Einstein condensates. Physical Review A, 75(2), 023617. doi:10.1103/PhysRevA.75.023617
- Xiong, B., & Gong, J. (2010). Dynamical creation of complex vector solitons in spinor Bose-Einstein condensates. Physical Review A, 81(3), 033618. doi:10.1103/PhysRevA.81.033618
- Qin, Z., & Mu, G. (2012). Matter rogue waves in an F= 1 spinor Bose-Einstein condensate. Physical Review E, 86(3), 036601. doi:10.1103/PhysRevE.86.036601
- Ding, C. C., Zhou, Q., Xu, S. L., Sun, Y. Z., Liu, W. J., Mihalache, D., & Malomed, B. A. (2023). Controlled nonautonomous matter-wave solitons in spinor Bose-Einstein condensates with spatiotemporal modulation. Chaos, Solitons & Fractals, 169, 113247. doi:10.1016/j.chaos.2023.113247
- Kanna, T., Vijayajayanthi, M., & Lakshmanan, M. (2010). Coherently coupled bright optical solitons and their collisions. Journal of Physics A: Mathematical and Theoretical, 43(43), 434018. doi:10.1088/1751-8113/43/43/434018
- Sun, Y., Hu, Z., Triki, H., Mirzazadeh, M., Liu, W., Biswas, A., & Zhou, Q. (2023). Analytical study of three-soliton interactions with different phases in nonlinear optics. Nonlinear Dynamics, 111(19), 18391-18400. doi:10.1007/s11071-023-08786-z
- Zhou, Q., Huang, Z., Sun, Y., Triki, H., Liu, W., & Biswas, A. (2023). Collision dynamics of three-solitons in an optical communication system with third-order dispersion and nonlinearity. Nonlinear Dynamics, 111(6), 5757-5765. doi:10.1007/s11071-022-08138-3
- Zhou, Q., Sun, Y., Triki, H., Zhong, Y., Zeng, Z., & Mirzazadeh, M. (2022). Study on propagation properties of one-soliton in a multimode fiber with higher-order effects. Results in Physics, 41, 105898. doi:10.1016/j.rinp.2022.105898
- Bersano, T. M., Gokhroo, V., Khamehchi, M. A., D'Ambroise, J., Frantzeskakis, D. J., Engels, P., & Kevrekidis, P. G. (2018). Three-component soliton states in spinor F=1 Bose-Einstein condensates. Physical Review Letters, 120(6), 063202. doi:10.1103/PhysRevLett.120.063202
- Doktorov, E. V., Rothos, V. M., & Kivshar, Y. S. (2007). Full-time dynamics of modulational instability in spinor Bose-Einstein condensates. Physical Review A, 76(1), 013626. doi:10.1103/PhysRevA.76.013626
- Dalfovo, F., Giorgini, S., Pitaevskii, L. P., & Stringari, S. (1999). Theory of Bose-Einstein condensation in trapped gases. Reviews of Modern Physics, 71(3), 463. doi:10.1103/RevModPhys.71.463
- Zhong, H., Tian, B., Jiang, Y., Li, M., Wang, P., & Liu, W. J. (2013). All-optical soliton switching for the asymmetric fiber couplers. The European Physical Journal D, 67, 1-15. doi:10.1140/epjd/e2013-30530-y
- Hirota, R. (1971). Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons. Physical Review Letters, 27, 1192-4. doi:10.1103/PhysRevLett.27.1192
-
У цій статті досліджується тризв’язане рівняння Гросса-Пітаєвського з гармонічним потенціалом у (2+1)-вимірному бозе-ейнштейнівському конденсаті зі спіном-1. За допомогою білінійного методу Хіроти отримано світлі та темні солітонні розв’язки системи з взаємодіями притягання та відштовхування, а також наведено амплітуди та швидкості цих солітонів. Крім того, проаналізовано вплив гармонічного потенціалу на динаміку солітонів і досліджується взаємодія між солітонами за допомогою асимптотичного аналізу. У результаті виявлено, що амплітуда і швидкість солітонів пов’язані з гармонічним потенціалом, а взаємодія між двома солітонами є пружною.
Ключові слова: солітон, білінійний метод Хірота, асимптотичний аналіз, конденсат Бозе-Ейнштейна
© Ukrainian Journal of Physical Optics ©
Tue Jan 07 2025 20:38:55 GMT+0000 (Coordinated Universal Time)