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1. Introduction 
In recent years, as a localized wave that can propagate undistorted in nonlinear physical media, 
the study of solitons has attracted increasing attention [1–3]. The main mechanism to generate 
these self-maintaining localized waves is the balance between the dispersion and nonlinearity 
effects. A particularly interesting property of solitons is their robust nature, displayed in their 
propagation dynamics and interaction process. This fascinating property makes them 
physically relevant nonlinear waves that are potentially useful in various practical applications. 
Experimentally, solitons are widely observed in various nonlinear physical systems, such as 
nonlinear optics, fluid dynamics, Bose-Einstein condensates (BECs), and so on [4, 5]. Regarding 
optical contexts, two distinct kinds of solitons, called bright and dark solitons, can be formed in 
the nonlinear media with anomalous and normal dispersion regimes, respectively. Taking 
advantage of several differences between such soliton types, a rich variety of powerful 
applications have been demonstrated with their utilization, including all-optical proceeding, 
signal transmission, switching, and many other optical applications related to condensed 
matter systems. 

The diluted gas BECs provide an ideal experimental platform for studying matter-wave 
solitons. At sufficiently low temperatures, the range of the atomic fluctuation behavior 
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exceeds the average distance between two atoms, and all atoms coalesce into a single 
quantum state with the lowest energy. This phenomenon is called BEC [6]. The particles in 
BEC have the same quantum state and the same dynamical properties. BEC promotes the 
development of related disciplines and has been widely used in fields such as cold atomic 
clocks, cold atomic interferometers, and optical tweezers [7–9]. In addition, matter-wave 
solitons in BEC allow the development of a new generation of electronic circuits and 
quantum computers [10].  At present, the nonlinear phenomena of BEC, such as solitons, 
superfluidity, and vortices, are still hot issues in research [11,12]. 

Simply considering two contact interactions between atoms, the evolution of the condensate 
can be described by the Gross-Pitaevskii (GP) equation, which provides a reliable guide to the 
analytic study of solitons in this system [13]. This accurate mean-field model generally 
incorporates an external potential accounting for the magnetic, optical, or combined confinement 
of dilute alkali vapors that constitute the BEC. Typically, the GP equation for a single-component 
BEC is integrable and confined in a one-dimensional magnetic traps potential system and 
generates matter-wave bright/dark solitons in experiments [14–17]; such bright/dark solitons in 
BECs have also been studied extensively theoretically [18–22]. Moreover, in the higher-
dimensional BEC model, in a large amount of theoretical work, the soliton solutions have been 
obtained and their interactions have been analyzed [23–28]. 

In an optical trap potential, due to interparticle interactions of atoms, the direction of 
atomic spins changes [29]. Accordingly, the order parameter of a spin-F BEC is described by 
a macroscopic wave function with  2F+1 components, which can vary over space and time. 
Currently, a part of the theoretical work has solved for multi-component vector solitons in 
spin BEC [30], correlated studies have shown a variety of interesting phenomena in this 
context [31, 32], including bright solitons [33], dark solitons [34], gap solitons [35], complex 
vector solitons [36], rogue wave [37], the nonautonomous ferromagnetic and polar solitons 
[38, 39]. So far, many analytical methods, such as bilinear methods, Darboux transformation 
methods, self-similarity transformation methods, and some numerical methods, have been 
used to solve nonlinear equations [40–42]. Among all the known methods, the Hirota 
bilinear technique is one of the most efficient methods to derive multi-soliton solutions of 
the GP equation (and its variants). It has been utilized in a number of works. It is worth 
mentioning that the research on multi-component GP equations mainly focuses on one 
dimension, and most of them are solved and analyzed using numerical methods. We should 
point out that the multidimensional nature of nonlinear dispersive waves may offer a 
number of novel features that are not found in the one-dimensional case, for example, by 
discovering novel multi-humped solitonic structures. Moreover, solutions in analytic form, 
when they exist for multidimensional nonlinear wave equations, can help one understand 
the dynamical processes and physical phenomena governed by these equations. To our 
knowledge, there have been no reported bright and dark soliton solutions obtained through 
resolution for the three-component GP equation. This work will consider two-dimensional 
GP equations with F=1 at a harmonic potential. In a two-dimensional harmonic potential, 
spin-1 GP equations with a harmonic potential can be written as [43, 44]  

 
 

2 2 2 *1, 1, 1, 1 0 1 1 10

2 2 2 *0, 0, 0, 1 1 0 0 0 1 1 0

2 2 2 ( , ) 0,

2 2 ( , ) 0,

t xx yy ext

t xx yy ext

i u x y

i u x y

         

           

     

   

      

       


 (1) 

where the distribution of atoms BEC is presented by the three-component macroscopic BEC 
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wave function 1 0 1( , ) [ ( , ), ( , ), ( , )]Tr t r t r t r t     , the superscript T represents transpose, 

with the components corresponding to the three values of the vertical spin 
projection 1,0, 1Fm    , and Fm  is the magnetic quantum number. Also, extu denotes the 

harmonic potential defined by 2 2 2( , ) ( )/ 2extu x y x y  , with /r z   , r  and z  being 

the confinement frequencies in the radial and axial directions. With the assumption 
that r z  , the motion of atoms in the Z direction is essentially frozen in the ground state 

of the axial harmonic trapping potential, therefore, the three-dimensional GP equation can be 
transformed to the aforementioned quasi two-dimensional form [45]. Additionally, 
when 1  , the interactions between atoms in Eq. (1) are attractive, so one can obtain bright 
solitons. Conversely, when 1   , the inter-atomic interactions in Eq. (1) are repulsive, the 
dark solitons can be obtained. We note in passing that the three-component soliton 
complexes of the dark-dark-bright and dark-bright-bright kinds have been experimentally 
generated in an 1F   condensate of 87Rb atoms [43]. 

In this letter, for the first time to our knowledge, we construct a bilinear form of coupled GP 
equations and derive the bright/dark one-soliton and two-soliton solutions by employing the 
Hirota bilinear method. Interestingly, no a priori constraints have been imposed on the physical 
parameters to find these soliton structures. Then, the analysis of soliton solutions provides the 
amplitude and velocity of bright/dark one-solitons. Finally, the elastic interaction between the 
bright/dark two-solitons will be discussed, via the asymptotic analysis. 

2. Bilinear form 
We first present the bilinear form that can be applied to generate the bright and the dark 
one- and two-soliton solutions of the above coupled GP equations in (2+1)-dimensions. To 
construct the Hirota bilinear form, the variable transformations are given by [46] 

  2 22 ( ) 2  2  2  
4

2  2  
g ( , , ) ,

( , , )

i j t tx y t
j t t

e x e y te
f e x e y t


      

   
    (2) 

where ( )jg are complex functions, and f  is a real function of , ,x y t . The bilinear form of 

Eq. (1) can be expressed as 
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2 ( 2 ) 0,
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t t tt x y
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iD e D e D e g f

iD e D e D e g f

D D f f g g g

g g g





 

      

     

 

 

   

   

      

 

  (3) 

where   is a real constant, ,x yD D  and tD  are bilinear derivative operators that have been 

defined in Ref. [47]. 
2.1. Bright soliton solutions 
To derive the bright one-soliton solutions of Eq. (1), we set 0   in the bilinear form (3). 
The expansion formers of ( )jg  and f  with respect to the small parameter   are truncated 

as 

 ( )( ) 2 21 , 1 ,jjg g f f         (4) 

with 
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*1 1 1

( )
21

0
1 1 1 1 1

, ,

( ) ,

j
jg e f ne

x y t

  

    

 

   
    (5) 

where the superscript   denotes the complex conjugate, 1  is complex function of ,x y and 

t , 1( )t  is complex function, 1 1, , ,j n    are all arbitrary complex constants, and 0
1  is the 

real one. Substituting Eqs. (4) and (5) into Eq. (3), we can collect the coefficients with the 
same power terms of   to zero, and then the bright one-soliton solutions with 1   can be 
simplified as 

 

 2 2

02  2  1 1 1 1

02  2  * 2  * 2  *1 1 1 1 1 1 1

2 2  
4

( )

( ) ( ) 2

( , , )

,
1

t t

t t t t

i x y t
j

e x l e y t
j

e x e y t e x e y t

x y t e

e
ne

  

      



    

       

   

  

     






  (6) 

with 

 
 

   

2 22 22 2  21 1 0 10
1 1 2 2 2* *1 1 1 1 1 1

( )
[ ] , , .

2 2

tie
t n

    
 

     

 



 

 
   

     

 (7) 

To secure the two-soliton solution of Eq. (1), the expansion formers are truncated as 

 ( ) ( )( ) 3 2 42 41 3 , 1 ,j jjg g g f f f            (8) 

with 

 

* *1 2 1 1 2 1 2 2

* * * *1 1 2 2 1 2 2 1

* *1 1 2 2

( ) ( )
( ) ( )1 3

2 1 2 3 4
0

4 5

, ,

,
, ( ) ,

j j
j j j j

i i i i i

g e e g L e S e

f n e n e n e n e

f n e x y t

       

       

   

 

    

   

   

  

   

   

    

  (9) 

where ( 1,2)i i   are complex functions of ,x y and t , ( ) ( 1,2)i t i   are complex 

functions, 0 ( 1,2)i i   are real constants, and 

, ( 1,2),i i i   , , , , ( 1,0), ( 1,2,3,4,5)j j j j jL S j n j     are complex constants. Substituting 

the above expressions into Eq. (3), the bright two-soliton solutions are given by 

 

 

* *1 2 1 1 2 1 2 2

* * * * * *1 1 2 2 1 2 2 1 1 1 2 2

2 2

1 2 3 4 5

2 2
4

 
( , , )

( )
.

1
j j j j

i x y t
x y t ej

e e L e S e
n e n e n e n e n e

       

           



     

      

   


  


    

  (10) 

The parameters of Eq. (10) are listed in the Appendix.  
2.2. Dark soliton solutions 
To derive the dark one-soliton solutions for Eq. (1), we assume   is a positive real number,  
with respect to the small parameter  , the expansion formers of ( )jg  and f  are truncated 

as  

 ( ) ( )( ) 10 1(1 ), 1 ,j jjg g g f f         (11) 

with  

 
1 1

0 1

( ) ( ) 2ii ( ) 1

0
1 1 1 1 1

, , ,

( ) ,

j jtjg p e g e f e

x y t

  

    

  

   
   (12) 
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where 1  is real function of ,x y and t , 1( ), ( )t t   are both real functions, ( 1,0)jp j    are 

complex constants, 0
1 1 1, , ,     are the real ones, and   ranges from 0 to 2 . Substituting 

Eqs. (11) and (12) into the Eq. (3), then the dark one-soliton solutions can be expressed as 

    02  2  1 1 1 12 2

02  2  1 1 1 1

( ) 2i( )2 2  
4

( )

1
( , , ) ,

1

t t

t t

e x e y ti ti jx y t
j e x e y t

p e e
x y t e

e

    

   


   

   

      

  





 (13) 

with 

 
 22 2  2 2 20

1 0 1 1
1

2 2 22 2  2 2 1 1 12 2
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( ) , , 2 2 ,
2 2

( ) csc
( ) ( ) cot , .

22 2

t

t

pet p p p p
p
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 (14) 

To secure the two-soliton solution of Eq. (1), the expansion formers are truncated as 

  ( ) ( ) ( )( ) 2 21 20 1 21 , 1 ,j j jjg g g g f f f            (15) 

with 

 
1 1 2 2 1 1 2 2

1 2 1 2

( ) ( ) ( )2i 2i 2i 2i( )
0 1 2

0
2 4

, , ,

, , ( ) ,

j j ji tj j

i i i i i

g p e g e e g d e

f Ae f e e x y t

       

        

    



   

      
 (16) 

where ( 1,2)i i   are real functions of ,x y and t , ( ) ( 1,2)i t i  are complex functions, 

( 1,0)jp j    are arbitrary constants, and    0, , , 1,2 , 1,0 ,i i i ji i d j A        are all real 

constants, and i  range from 0 to 2 . Hence, the dark two-soliton solution can be 

constructed as 

 

 

 

2 2

1 1 2 2 1 1 2 2

1 2 1 2

2 2  
4

2i 2i 2i 2i( )

( , , )

1
.

1

i x y t
j

i tj j

x y t e

p e e e d e
e e Ae

       

   


   

    





  


  

 (17) 

The parameters of Eq. (17) are listed in the Appendix. 

3. Dynamics of the one-soliton 
Here, we will analyze the soliton solutions obtained in the previous sections. The bright one-
soliton solutions of Eq. (1) are obtained from Eq. (6) it can be expressed as 

  1( , , )2  

1sech ( , , ) ln ,
2

i x y tt

j
je e

x y t n
n


 

  
     (18) 

where 1 1( , , ), ( , , )x y t x y t   are the real functions denoted as  
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2  1 1 1
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( , , ) ( )

2 2 .
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t I I
t

I R I R

t R R
t

R I R I

x y t e x y

e x y

x y t e x y

e

  

   

  

    

 

 

 

 

 

     


 

  


  (19) 

The subscripts R  and I  denote the real and imaginary parts. The amplitudes of the solitons 

can be summarized as 
2

2
j te

n
  

. Thus, the amplitudes of the solitons are mainly 
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determined by the parameters 0 1 1 1, , , , ,      . Characteristic-line employed for 

propagation of the bright one-soliton can be written as 

   2 2  02  2  1 1 1 1 1 1 1 ln .
2

tt tR R R I R I
ee x e y n const      
 

        


 (20) 

Where const is an arbitrary constant. Deriving the differential Eq. (20) with respect to t , the 

soliton velocity  ,
T

x y   can be expressed as 

  2  21 1 1 1 1

1

2 ( ) 2
,

t tR I R I
x y

R

e C t e   
 



    
    (21) 

  2 2  0
1 1 1 1 1 1( ) ln )

2
t

R I R I
eC t const n    
 

    


 is a real function. Therefore, the soliton 

velocity is not only determined by the amplitude parameters but also affected by the 
coefficient 0

1 . Since there are similar properties between the three components j , we will 

only analyze the component 1  as an example. 

Now we will discuss the propagation properties of the bright one-soliton. Fig. 1a 
presents the change of the bright one-soliton with respect to the coordinates x  and y  for 

different t. It is clearly found that the soliton amplitude decreases significantly with the 
increase of t , and the soliton amplitude tends to be close to 0 when t  is increased to a 
certain value, which is consistent with the results of Eq. (18). The soliton velocity also 
changes during the propagation process, and this property is consistent with the analysis of 
Eq. (21). Next, we will discuss the influence of various parameters on the structure of the 
bright one-soliton at the same t . Firstly, compared with Fig. 1a2, the value of parameter 1  

will have a significant impact on the propagation direction and amplitude of bright solitons, 
as shown in Fig. 1b. Fig. 1c shows that as the intensity of the harmonic potential parameter 
  increases, the amplitude of the bright soliton decreases. Secondly, from Fig. 1b and 
Fig. 1d, it can be seen that if the intensity of the harmonic potential parameter   is reduced, 
the position of the soliton changes, and the velocity of the soliton decreases, but the 
amplitude change is relatively small. 

To analyze the propagation properties and interactions of the dark solitons, the 
intensity of the soliton based on the dark one-soliton solutions Eq. (13) is given by 

 
2 2 12 2  2 21 sin ( )sech ( ) ,

2
tj je p        

   (22) 

where   2 2  02 22  1 1 1 1 1 1( ) cot( )
2 2

tt ee x y      
 

     


is a real function. Then the 

amplitude of dark one-soliton solutions is written as 2  (1 cos( ))t je p    . Therefore, the 

soliton amplitude is determined by the parameters ,jp   and  .   is fixed to a positive 

number, and the soliton amplitude decreases significantly with increasing time t . To derive 
the propagation velocity of the soliton, characteristic-line employed for propagation of the 
dark one-soliton is expressed as 

   2 2  02 22  1 1 1 1 1( ) cot( ) .
2 2

tt ee x y const     
 

      


  (23) 
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Fig. 1. The spatial-temporal evolution of the bright one-soliton solutions via Eq. (6). The parameters 
are 0

1 1,  1 2 ,i   0 2 2 / 2,i    1,   1 2 / 2 i   ; (a) 1 1 / 2,i    1 / 8  ;  
(b) 1 1 1 / 4,    1 / 8  ; (c) 1 1 / 2i   , 1  ; (d) 1 1 / 4,i    1 / 80  . 

Differentiating the distance of two characteristic lines with respect to t , the soliton 

velocity  ,
T

x y   can be expressed as 

 
 2 22  2  2 1 1

1

2 ( ) cot( )
,

t t

x y
e C t e   

 


    
    (24) 

where   2 2  02 2
2 1 1 1( ) cot( )

2 2
teC t const    

 
   


 is a real function, which indicates that the 

velocities of the dark soliton are related to the parameters 1 1, , ,   . 
To discuss the propagation properties of the dark soliton, the dark one-soliton solutions 

with respect to the coordinates x  and y  are shown in Fig. 2. Figs. 2a shows the dark soliton 
structure with time t  for the same parameters. As t  increases, the background plane for 
dark soliton propagation becomes lower, while the soliton amplitude decreases. When t  
increases to a certain value, the amplitude of the soliton tends to 0. This property is 
consistent with the analysis of Eq. (22). At 1t  , the effect of different parameters on the 
soliton structure is also analyzed. Compared to Fig. 2a2, the soliton amplitude remains 
unchanged, and the soliton propagation direction changes by decreasing 1  in Fig. 2b. 
Increasing the strength   of the harmonic potential in Fig. 2c, the background plane of the 
dark soliton decreases while the soliton amplitude decreases. Conversely, reducing the 
strength of the harmonic potential   in Fig. 2d, the background plane of the dark soliton is 
raised, and the soliton amplitude increases; other properties are the same as in Fig. 2a2. 
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Fig. 2. The spatial-temporal evolution of the dark one-soliton via solutions (13). The parameters 
are 1,  0

1 1,  = 1,  1 1 4,   1 1 ,p i  / 3  ; (a) 1 / 10,  1 1  ; (b)  1 / 10,  1 1   ; 
(c) 1 / 4,  1 1  ; (d) 1 / 80,  1 1.   

4. Interaction analysis of the two-soliton 
To discuss the interaction property between the bright two-solitons, we perform the 
asymptotic analysis of soliton solutions Eq. (10). In the following section, the expressions 
before the interaction of the two-solitons are denoted by 1 2

1 1,  
  , while the expressions 

after the interaction of the two-solitons are denoted by 1 2
1 1,  
  , respectively.  

Through calculating the equations between 1  and 2 , we assume 
2 2 2 2

2 1 1 2 2 11 1 2 2( ) ( ) ,             , and the asymptotic patterns are derived to be expressed as 
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( ~ , ~0),

sech ( , , ) ln , ( ~ , ~ 0),
2

i x y tte e x y t n
n


   


     






  

    

 (25) 

where ( , , ), ( , , )( 1,2)i ix y t x y t i    are the real functions denoted as 
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2 2  2 2 2 22  2 2

2 2  02  

2( , , ) ( ) ,
42 2

( , , ) ( ) 2 2 .
2 2

tti iI iI iI iR iI iR

tti iR iR iR iI iR iI i

ex y t e x y x y

ex y t e x y

      

       

 
 

 
 

       


    


       (26) 

Observing the asymptotic form of 1
1 
  and 1

1 
 , we calculate that the amplitudes, velocities, 

and structures of the solitons remain invariant during the interaction except for the initial 
phase. Therefore, the interaction of the two-solitons is elastic. 

   

   

   

   

 

Fig. 3. The spatial-temporal evolution of the bright two-soliton via Eq. (10). The parameters are 
1
0 1,  2

0 2,   0 2 ,i    1 1 2 ,i   1 1 / 2,i   2 2 ,i   1  ; (a) 1 2 ,i   1 1 2 ,i    
=1/10 ; (b) 1 2 ,i    1 2 / 2,i   =1/10 ; (c) 1 1 ,i    1 1 2 ,i   =1/10 ; (d) 1 2 i   , 

1 1 2 ,i   =1/4 ; (e) 1 2 ,i   1 1 2 ,i   =1/20.  
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The interaction of the bright two-soliton solution in the x y  plane is shown in Fig. 3. 

Fig. 3a illustrates the overtaking interaction between bright two-solitons, where the bright 
two-solitons with different velocities move in the same direction, the bright soliton with a 
larger amplitude moves faster than the one with a smaller amplitude and overtakes the one 
with smaller amplitude after the interaction occurs. Fig. 3b shows the reciprocal interaction 
between bright two-solitons; the two-solitons with different velocities and amplitudes 
propagate along opposite directions and then separate after interaction at a certain time. 
Comparing from the three images separately, we can observe the amplitude of the  
two-solitons decreases with time t . Moreover, the interaction of the two-solitons does not 
affect the evolutionary trend of the soliton amplitude and velocity. Therefore, the interaction 
of the two-solitons is elastic; this property is consistent with the asymptotic analysis of the 
bright two-soliton Eq. (25). When fixed at the same t , the effects of the other parameters on 
the structure of the two-soliton are consistent with that of the one-soliton. Compared to 
Fig. 3a2, Fig. 3c varies the parameter 2 , which influences the soliton velocity, shape, and 

direction of propagation. If the intensity of the harmonic potential parameter   is changed, 
the amplitude and velocity of solitons will undergo significant changes during propagation, 
as shown in Fig. 3d and Fig. 3e. The interaction time between two-solitons has changed; that 
is, it advances when the strength of   increases and delays when the strength of 
 decreases.  

Next, we will discuss the dynamics of the interactions between the dark two-solitons by 
using the asymptotic analysis method to investigate the solutions of Eq. (17). 

After expressing the equations between 1  and 2  according to Eq. (16), we can 

assume 2 2 2 2
1 2 2 1 1 2 2 11 1 2 2( )cot( ) ( )cot( ) ,               , from the above relational equations, 

we summarize the asymptotic patterns, thus the mode-squared expressions for the dark 

two-soliton before and after the interaction 
2 21 1, ( 1,2)j j j  

    are denoted respectively as 
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  (27) 

where  ( ), , , ( 1,2)iM t x y t i   are the real functions denoted as 

 

 

22 2
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,
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t
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M e p
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e
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    (28) 

Since except for phase, the amplitude, width, and velocity of the dark two-soliton remain 
constant before and after the interaction, the dark two-soliton exhibits elastic interaction 
during propagation. 
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Fig. 4. The spatial-temporal evolution of the dark two-soliton via Eq. (17). The parameters are 
1
0 1,  2

0 1,  = 1,  1 2 , p i 0 1 p i ; (a) 1/10,   1 2,  1 2 / 3,  2 4 / 5  ;   
(b) 1/10,  1 2,  1 2 / 3,  2 / 5  ; (c) 1 2 / 3,  2 / 5,  1/ 20,  1 2  ;   
(d) 1 2 / 3,  2 / 5,  1/ 20,  1 3   ; (e) 1 2 / 3,  2 / 5,  1/ 4,  1 2.   
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Fig. 4 illustrates the dark two-soliton solution in terms of the coordinates x  and y  to 

discuss the interaction properties of the dark solitons. Fig. 4a depicts the overtaking 
interactions between the two dark solitons, namely, the dark two-soliton propagates in the 
same direction with different velocities. In Fig. 4b, dark two-soliton propagate along the 
opposite direction, approaching and interacting with each other. After the interaction, the 
amplitude and velocity changes of the two-solitons remain unchanged. Therefore, the dark 
two-soliton interaction is elastic, and this property is consistent with the asymptotic analysis 
of the dark two-soliton Eq. (27). At 4t  , the effect of different parameters on the soliton 
interaction is analyzed. In Fig. 4d, as the parameter 1  is varied, the propagation direction of 

the two-soliton changes, and the amplitude remains unchanged compared with Fig. 4b2. In 
Fig. 4c, decreasing the strength of the harmonic potential parameter  , the background 
plane of the dark soliton is elevated while the soliton amplitude increases and two-soliton 
velocity decreases. In Fig. 4d, increasing the strength of harmonic potential  , the 
background plane of the dark soliton is lowered while the amplitude of two-solitons 
decreases; as the two-solitons are interact at this moment, the velocity increases.  

5. Conclusion 
In this paper, a (2+1)-dimensional three coupled GP system in spinor-1 BEC has been 
investigated by the Hirota method. Via constructing the bilinear forms of Eq. (3), bright one-
solitons and bright two-solitons have been obtained when the system exhibits attractive 
interactions In contrast dark one-solitons and dark two-solitons have been obtained when 
the interactions is repulsive. We find that the amplitude of bright/dark solitons and the 
background plane of dark solitons decreases with the increase of harmonic potential 
strength, and vice versa. In addition, the elastic collision properties between solitons were 
discussed. These results may be helpful in understanding the dynamical behavior of localized 
waves in a (2+1)-dimensional spin-1 BECs. Lastly, we hope that the exact form of the soliton 
structures obtained here may be profitably exploited in designing the optimal BEC 
experiments. 
Appendix 
The parameters in Eq. (6) are listed as follows: 
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The parameters in Eq. (10) are listed as follows: 
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Анотація. У цій статті досліджується тризв’язане рівняння Гросса-Пітаєвського з 
гармонічним потенціалом у (2+1)-вимірному бозе-ейнштейнівському конденсаті зі 
спіном-1. За допомогою білінійного методу Хіроти отримано світлі та темні 
солітонні розв’язки системи з взаємодіями притягання та відштовхування, а також 
наведено амплітуди та швидкості цих солітонів. Крім того, проаналізовано вплив 
гармонічного потенціалу на динаміку солітонів і досліджується взаємодія між 
солітонами за допомогою асимптотичного аналізу. У результаті виявлено, що 
амплітуда і швидкість солітонів пов’язані з гармонічним потенціалом, а взаємодія між 
двома солітонами є пружною. 

Ключові слова: солітон, білінійний метод Хірота, асимптотичний аналіз, конденсат 
Бозе-Ейнштейна  


