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1. Introduction
In recent years, as a localized wave that can propagate undistorted in nonlinear physical media,

the study of solitons has attracted increasing attention [1-3]. The main mechanism to generate
these self-maintaining localized waves is the balance between the dispersion and nonlinearity
effects. A particularly interesting property of solitons is their robust nature, displayed in their
propagation dynamics and interaction process. This fascinating property makes them
physically relevant nonlinear waves that are potentially useful in various practical applications.
Experimentally, solitons are widely observed in various nonlinear physical systems, such as
nonlinear optics, fluid dynamics, Bose-Einstein condensates (BECs), and so on [4, 5]. Regarding
optical contexts, two distinct kinds of solitons, called bright and dark solitons, can be formed in
the nonlinear media with anomalous and normal dispersion regimes, respectively. Taking
advantage of several differences between such soliton types, a rich variety of powerful
applications have been demonstrated with their utilization, including all-optical proceeding,
signal transmission, switching, and many other optical applications related to condensed
matter systems.

The diluted gas BECs provide an ideal experimental platform for studying matter-wave
solitons. At sufficiently low temperatures, the range of the atomic fluctuation behavior
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exceeds the average distance between two atoms, and all atoms coalesce into a single
quantum state with the lowest energy. This phenomenon is called BEC [6]. The particles in
BEC have the same quantum state and the same dynamical properties. BEC promotes the
development of related disciplines and has been widely used in fields such as cold atomic
clocks, cold atomic interferometers, and optical tweezers [7-9]. In addition, matter-wave
solitons in BEC allow the development of a new generation of electronic circuits and
quantum computers [10]. At present, the nonlinear phenomena of BEC, such as solitons,
superfluidity, and vortices, are still hot issues in research [11,12].

Simply considering two contact interactions between atoms, the evolution of the condensate
can be described by the Gross-Pitaevskii (GP) equation, which provides a reliable guide to the
analytic study of solitons in this system [13]. This accurate mean-field model generally
incorporates an external potential accounting for the magnetic, optical, or combined confinement
of dilute alkali vapors that constitute the BEC. Typically, the GP equation for a single-component
BEC is integrable and confined in a one-dimensional magnetic traps potential system and
generates matter-wave bright/dark solitons in experiments [14-17]; such bright/dark solitons in
BECs have also been studied extensively theoretically [18-22]. Moreover, in the higher-
dimensional BEC model, in a large amount of theoretical work, the soliton solutions have been
obtained and their interactions have been analyzed [23-28].

In an optical trap potential, due to interparticle interactions of atoms, the direction of
atomic spins changes [29]. Accordingly, the order parameter of a spin-F BEC is described by
a macroscopic wave function with 2F+1 components, which can vary over space and time.
Currently, a part of the theoretical work has solved for multi-component vector solitons in
spin BEC [30], correlated studies have shown a variety of interesting phenomena in this
context [31, 32], including bright solitons [33], dark solitons [34], gap solitons [35], complex
vector solitons [36], rogue wave [37], the nonautonomous ferromagnetic and polar solitons
[38, 39]. So far, many analytical methods, such as bilinear methods, Darboux transformation
methods, self-similarity transformation methods, and some numerical methods, have been
used to solve nonlinear equations [40-42]. Among all the known methods, the Hirota
bilinear technique is one of the most efficient methods to derive multi-soliton solutions of
the GP equation (and its variants). It has been utilized in a number of works. It is worth
mentioning that the research on multi-component GP equations mainly focuses on one
dimension, and most of them are solved and analyzed using numerical methods. We should
point out that the multidimensional nature of nonlinear dispersive waves may offer a
number of novel features that are not found in the one-dimensional case, for example, by
discovering novel multi-humped solitonic structures. Moreover, solutions in analytic form,
when they exist for multidimensional nonlinear wave equations, can help one understand
the dynamical processes and physical phenomena governed by these equations. To our
knowledge, there have been no reported bright and dark soliton solutions obtained through
resolution for the three-component GP equation. This work will consider two-dimensional
GP equations with F=1 at a harmonic potential. In a two-dimensional harmonic potential,
spin-1 GP equations with a harmonic potential can be written as [43, 44]

. 2 2 *
i1+ Gt + 91, yy + 20 ([Bua + 200 |91 + 200801 + oy (0, YW1 =0,

i + B, + b,y + 20|82 (01" + g0 ) + 200501101 + e (5, 9)0 =0,

where the distribution of atoms BEC is presented by the three-component macroscopic BEC

(1)
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wave function ¢(r,t)=[¢_4(r,t),@(r,t),¢,1(r,t)]T, the superscript T represents transpose,

with the components corresponding to the three values of the vertical spin

projectionm; =-1,0,+1, and mg is the magnetic quantum number. Also, u,, denotes the

ext

harmonic potential defined by u,,,(x,y)=Q2(x2+ y2) /2, with Q=0, /®,, ©, and ®, being
the confinement frequencies in the radial and axial directions. With the assumption

that w, >> w, , the motion of atoms in the Z direction is essentially frozen in the ground state

of the axial harmonic trapping potential, therefore, the three-dimensional GP equation can be
transformed to the aforementioned quasi two-dimensional form [45]. Additionally,
when o =1, the interactions between atoms in Eq. (1) are attractive, so one can obtain bright
solitons. Conversely, when o =-1, the inter-atomic interactions in Eq. (1) are repulsive, the
dark solitons can be obtained. We note in passing that the three-component soliton
complexes of the dark-dark-bright and dark-bright-bright kinds have been experimentally
generated in an F =1 condensate of 87Rb atoms [43].

In this letter, for the first time to our knowledge, we construct a bilinear form of coupled GP
equations and derive the bright/dark one-soliton and two-soliton solutions by employing the
Hirota bilinear method. Interestingly, no a priori constraints have been imposed on the physical
parameters to find these soliton structures. Then, the analysis of soliton solutions provides the
amplitude and velocity of bright/dark one-solitons. Finally, the elastic interaction between the
bright/dark two-solitons will be discussed, via the asymptotic analysis.

2. Bilinear form
We first present the bilinear form that can be applied to generate the bright and the dark

one- and two-soliton solutions of the above coupled GP equations in (2+1)-dimensions. To

construct the Hirota bilinear form, the variable transformations are given by [46]

@(x2+ y2)—20t gl)(e~2Qtx,e~2Qt y t)
fleV2tx,e~2Qtyt) '

9 =e (2)

where gU) are complex functions, and f is a real function of x,y,t. The bilinear form of
Eq. (1) can be expressed as
(iDt +e-22QtD2 1 e 220 tD2 —e-220 rg)g(ﬂ)f =0,

(iDt +e-22QtD2 1 e 220 tp2 — 2320 rg)g(O)f =0,

2 2 2 (3)
(D)§+D)2/—],)f><f—20'(|g(+1)| +|gED[" +2|g@[) =0,

[g@T - gthgt-n =0,
where A is a real constant, D,,D, and D, are bilinear derivative operators that have been

defined in Ref. [47].
2.1. Bright soliton solutions
To derive the bright one-soliton solutions of Eq. (1), we set 1 =0 in the bilinear form (3).
The expansion formers of g/) and f with respect to the small parameter & are truncated
as

g =g, f=1+s2f,, 4)
with
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U) =pjem, f, =nem+ni, 5)

M =KkiXx+yuy+ao)+nd,
where the superscript * denotes the complex conjugate, n; is complex function of x,y and
t, w;(t) is complex function, g LK, are all arbitrary complex constants, and 7} is the

real one. Substituting Egs. (4) and (5) into Eq. (3), we can collect the coefficients with the
same power terms of ¢ to zero, and then the bright one-soliton solutions with £=1 can be
simplified as

V20 (x2+yz) V2Qt

¢i(x,yt)=e 4
ﬂ exle*fﬂ fx+11e*«fﬂ fy+w1(t)+n1 (6)
1+nel€1€ V20 fx+11eﬂf9 ty+oq(t)+xje V20 tx+ije~ V20 ty+w1(t)+2,h
with
io— 2 2 2 2
2 Zﬁm(ll +K1) B (B0l |ﬂ 1o 7
oift]= N Y.
1 |ﬂ_1| [(11 +1) +(K1+K1) J
To secure the two-soliton solution of Eqg. (1), the expansion formers are truncated as
q. p
gD =egP+e3g8), f =1+ 62f, +£4f,, (8)
with
g = = Bpem +agpenz, g =L en+ni+n; +S e+,
fo = mem+i + nyelztz + nyeM+iz + nyelz i, 9

f4 =neem+nitntnz, n. = kix +yy + o, t)+n?,
where 7; (i=1,2) are complex functions of x,yand t, ;t) (i=1,2) are complex
functions, n? (i =1,2) are real constants, and
4,k (i=1,2), BjajL;,S;, (j=%1,0), n; (j=1,2,3,4,5)are complex constants. Substituting

the above expressions into Eq. (3), the bright two-soliton solutions are given by

ﬁiQ(XZ +y2)-20t
¢j[x,y,t] =e 4

(10)
y (Bjem +a ez + Ljem+m+nz +S e+t )

1+ ny @M+ +nyele i + ngem+ +nyellz i + neem+ni+i+n;
The parameters of Eq. (10) are listed in the Appendix.
2.2. Dark soliton solutions
To derive the dark one-soliton solutions for Eq. (1), we assume A is a positive real number,
with respect to the small parameter ¢, the expansion formers of g(/) and f are truncated

as
g =g +eg), f=1+¢f,, (11)
with

) = p eipt) gD = p&+2i10 £, — o
g p.eirt), g esit2t f =es,
0 J 1 1 (12)

& =X +yy+o(t)+E&P,
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where ¢; is real function of x,y and t, w;(t), p(t) are both real functions, p;(j=%1,0) are

complex constants, ky,y,&0,0 are the real ones, and 6 ranges from 0 to 27 . Substituting

Egs. (11) and (12) into the Eq. (3), then the dark one-soliton solutions can be expressed as

ﬁiQ(x2+y2)—ﬁQ ¢ pjeir®) (1 + ekieE0 tx 020 ry+a)1(t)+§{’+2i0)
pilortize * 1+ exie V2 trrne 22ty o ()+5) - 19
with
e-22Qt), pé ( 2 2 z)
t)=——2, p, =2 1=-2(2 + +|p_ o,
PO=5 o Py [po|” + [P +[p4]
. (14)
220t 2 2 || (i +x)o csco
o (t) = (2 + k)" cot o, =— + )
1O =~ + kDS lpo|” =P o
To secure the two-soliton solution of Eq. (1), the expansion formers are truncated as
9 =g (1+6g{ + 229, f =1+ f, + 521, (15)
with
g(()j) =pjeir), g%j] = e&1+210, 1 @&+2i0, ggj] =d je&1+2i0, 8,420, (16)

f, =Aeéi+e, f, =eé +e%, & =kx +y + o (t) + EP,
where & (i=1,2) are real functions of x,yand t, ,(t)(i=1,2)are complex functions,
p; (j=+1,0) are arbitrary constants, and L, ki, ED,0; (i:1,2),dj (j=%1,0),A are all real
constants, and 6; range from O to 27 . Hence, the dark two-soliton solution can be

constructed as

b= 3 e
] ) )

17
pjeirt) (1 +e511210; 4 e5p+210; 4 d]-e§1+2191+§2+21‘92 ) (17
x

1+eé +eb2 + Aesiter
The parameters of Eq. (17) are listed in the Appendix.

3. Dynamics of the one-soliton
Here, we will analyze the soliton solutions obtained in the previous sections. The bright one-

soliton solutions of Eq. (1) are obtained from Eq. (6) it can be expressed as
Bje~22tein(xy.t)
%= 2Jn

where y(x,y,t), y1(x,y,t) are the real functions denoted as

sech(;/l(x,y,t)+1nx/ﬁ), (18)

nxyt)= e—20 X +14,))

e-220t 20
+(K%1_K12R+l%1_l%R) 2720 + 4

(x2+y2),
(19)
ri(x,y,t)= e—20 t(kipX + 4 RY)
-2V20t
+(261 picyy + 20l ) e + 0.
(2r1picys + 201 ) 220 U1
The subscripts R and I denote the real and imaginary parts. The amplitudes of the solitons
20t
e

2n |

can be summarized as Thus, the amplitudes of the solitons are mainly
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determined by the parameters fy, f_1,k1,4,Q,0. Characteristic-line employed for

propagation of the bright one-soliton can be written as
e-22Q¢t

V20

Where const is an arbitrary constant. Deriving the differential Eq. (20) with respect to t, the

K1pe V22 tx + 1y e ~22ty + (i picyy + 1Rl ) +19 +Inn = const. (20)

. . T
soliton velocity (ux,uy) can be expressed as

S V2062010, () - 2(ky gy + 1yt e V2

X y ’
K1Rr

(21)

-2420
e\/E—Qt—n? —ln«/ﬁ) is a real function. Therefore, the soliton

velocity is not only determined by the amplitude parameters but also affected by the

C1(t) = const —(kygky; +glyy)

coefficient 7. Since there are similar properties between the three components ¢;, we will

only analyze the component ¢ ; as an example.

Now we will discuss the propagation properties of the bright one-soliton. Fig. 1a
presents the change of the bright one-soliton with respect to the coordinates x and y for

different t. It is clearly found that the soliton amplitude decreases significantly with the
increase of t, and the soliton amplitude tends to be close to 0 when t is increased to a
certain value, which is consistent with the results of Eq.(18). The soliton velocity also
changes during the propagation process, and this property is consistent with the analysis of
Eq. (21). Next, we will discuss the influence of various parameters on the structure of the
bright one-soliton at the same t . Firstly, compared with Fig. 1a,, the value of parameter x;

will have a significant impact on the propagation direction and amplitude of bright solitons,
as shown in Fig. 1b. Fig. 1c shows that as the intensity of the harmonic potential parameter
Q) increases, the amplitude of the bright soliton decreases. Secondly, from Fig. 1b and
Fig. 1d, it can be seen that if the intensity of the harmonic potential parameter Q is reduced,
the position of the soliton changes, and the velocity of the soliton decreases, but the
amplitude change is relatively small.

To analyze the propagation properties and interactions of the dark solitons, the
intensity of the soliton based on the dark one-soliton solutions Eq. (13) is given by

|¢5]-|2 =e—2\/§Qf|pj|2[1—sin2(9)sech2[% }, (22)
where & =eV2Qt(kx +1y)- (12 + K2 )cot(G)& +&0is a real function. Then the
UL N

amplitude of dark one-soliton solutions is written as e—v22 f|p j|[1—|cos(9)|). Therefore, the
soliton amplitude is determined by the parameters p;, 6 and Q. Q is fixed to a positive

number, and the soliton amplitude decreases significantly with increasing time ¢t . To derive
the propagation velocity of the soliton, characteristic-line employed for propagation of the
dark one-soliton is expressed as

e-2\20t

20t _(42 2 e~
e KiX+1 ¥+ k% )cot (6
(e 1Y) (1 1) ©) 2420

+&D =const. (23)
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v

(c)t=1 (d) t=1

Fig. 1. The spatial-temporal evolution of the bright one-soliton solutions via Eq. (6). The parameters
are n9=1, B, =2+i, By=2+2i/2, o=1, y=+2/2-i; (@ x,=1+i/2, Q=1/8;
(b) Ky =1+1/4, Q=1/8;(c) k, =1+i/2, Q=1;(d) k, =1+i/4, Q=1/80.

Differentiating the distance of two characteristic lines with respect to t, the soliton

) T
velocity (ux,uy) can be expressed as
~ V2Qe V2 tC,(t) - et (112 +k7 )cot(@)

K1

=U

x =Uy (24)

e-2\20t
220
velocities of the dark soliton are related to the parameters ¢, x;,Q,6 .

where C,(t)=const +(zf + Kf)cot(H) — &9 is a real function, which indicates that the

To discuss the propagation properties of the dark soliton, the dark one-soliton solutions
with respect to the coordinates x and y are shown in Fig. 2. Figs. 2a shows the dark soliton

structure with time t for the same parameters. As t increases, the background plane for
dark soliton propagation becomes lower, while the soliton amplitude decreases. When t
increases to a certain value, the amplitude of the soliton tends to 0. This property is
consistent with the analysis of Eq. (22). At t =1, the effect of different parameters on the
soliton structure is also analyzed. Compared to Fig. 2a,, the soliton amplitude remains
unchanged, and the soliton propagation direction changes by decreasing x; in Fig. 2b.
Increasing the strength Q of the harmonic potential in Fig. 2c, the background plane of the
dark soliton decreases while the soliton amplitude decreases. Conversely, reducing the
strength of the harmonic potential Q in Fig. 2d, the background plane of the dark soliton is
raised, and the soliton amplitude increases; other properties are the same as in Fig. 2a,.
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Fig. 2. The spatial-temporal evolution of the dark one-soliton via solutions (13). The parameters
aree=1,7n0=1 0=-1, :—1/4, py=1+i,0=n/3;() Q=1/10,x,=1;(b) Q=1/10, x; =-1;
() Q=1/4, x,=1;(d) @=1/80, x; =1.

4. Interaction analysis of the two-soliton
To discuss the interaction property between the bright two-solitons, we perform the

asymptotic analysis of soliton solutions Eq. (10). In the following section, the expressions
before the interaction of the two-solitons are denoted by ¢17,#2, while the expressions

after the interaction of the two-solitons are denoted by ¢17, #?], respectively.

Through  calculating the equations between 1, and 17,, we assume

(1 + k)i, < (13 + K3y, Yk <k , and the asymptotic patterns are derived to be expressed as

SeN2Q teiri(x.yt)
NS

eV2Q teizy(x,y.t)
ot =1 2 sech(y1(x,y,6)+1nny ), (g +ni~0,m, +n3~—0),
1

1- —
+1 —

SeCh{}’l(X y't)Hn\/n:J (11 +11~0,mp + 113~ +0),

(25)
LieN2Qtein(x.y.)

92 =——————sech| y,(x, y,t)+1n = .( +11~ + 00,17, +13~0),
2\nng

a,eN2Q teizy(x,y.t)
P = 1 2\/; SECh(}’z(X y,t)+ln\/72), (171 +n1 ~ —o0,my +115 ~0),
)

where y;(x,y,t), 7;(x,y,t) (i =1,2) are the real functions denoted as
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-2320
2i(x,y,6) =e~V22t(k, x +1i1y)+(l<i21 — Kk +15 —ih )—e Ly V20 (x2+y2),
220 4 26)
e-2\20t
v,y t) = e V2t (KX + 15 y) + (2kcipk + 2011 )2\/—? +n).

Observing the asymptotic form of ¢l7 and ¢!}, we calculate that the amplitudes, velocities,

and structures of the solitons remain invariant during the interaction except for the initial
phase. Therefore, the interaction of the two-solitons is elastic.

x -5 -0y
(e) t=4
Fig. 3. The spatial-temporal evolution of the bright two-soliton via Eq. (10). The parameters are
M=l nE=-2 ay=—2+i, a =1+2i, ki, =1+i /2, k,=2+i, 6=1; (a) B, =2—1, 1, =1+2i,
Q=1/10; (b) B, =2—i, ,=2-i/2,Q=1/10; (c) By=1+i, 1 =1+2i, Q=1/10; (d) B, =21,
y=1+2i, Q=1/4;(e) p_,=2-1, y =1+2i, Q=1/20.
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The interaction of the bright two-soliton solution in the x—y plane is shown in Fig. 3.

Fig. 3a illustrates the overtaking interaction between bright two-solitons, where the bright
two-solitons with different velocities move in the same direction, the bright soliton with a
larger amplitude moves faster than the one with a smaller amplitude and overtakes the one
with smaller amplitude after the interaction occurs. Fig. 3b shows the reciprocal interaction
between bright two-solitons; the two-solitons with different velocities and amplitudes
propagate along opposite directions and then separate after interaction at a certain time.
Comparing from the three images separately, we can observe the amplitude of the
two-solitons decreases with time t . Moreover, the interaction of the two-solitons does not
affect the evolutionary trend of the soliton amplitude and velocity. Therefore, the interaction
of the two-solitons is elastic; this property is consistent with the asymptotic analysis of the
bright two-soliton Eq. (25). When fixed at the same t, the effects of the other parameters on
the structure of the two-soliton are consistent with that of the one-soliton. Compared to
Fig. 3a;, Fig. 3c varies the parameter f,, which influences the soliton velocity, shape, and
direction of propagation. If the intensity of the harmonic potential parameter Q is changed,
the amplitude and velocity of solitons will undergo significant changes during propagation,
as shown in Fig. 3d and Fig. 3e. The interaction time between two-solitons has changed; that
is, it advances when the strength of ) increases and delays when the strength of
Q decreases.

Next, we will discuss the dynamics of the interactions between the dark two-solitons by
using the asymptotic analysis method to investigate the solutions of Eq. (17).

After expressing the equations between 7; and 7, according to Eq.(16), we can
assume (i + kf)cot(6; ), < (i + k3)cot(0,)ky, 4k, < k7 , from the above relational equations,

we summarize the asymptotic patterns, thus the mode-squared expressions for the dark

2 2
two-soliton before and after the interaction |(p}j‘.| |goi}+| (j=1,2) are denoted respectively as
2 ..
ot =M|1- smzwl)sech%%)}, (60~ —<0),

ot =m 1—sin2(91)sech2(@)} (608~ +72),

- " 27)
ok =1 —sinZ(ez)sechZ(‘fZ*Z#)} (&~ +0,8~0),
o34 = 1-sin(@y)sechi ) |, (6~ -on.p~0),
where M(t),&;(x,y,t) (i=1,2) are the real functions denoted as
M :e—2m|pl|2,
gi = Kie—x/thX + l,-e‘ﬁmy (28)
-2720¢
—(2 + k2)cot(0)€ + &0,
(1 +xf Jeor( )zﬁQt ‘i

Since except for phase, the amplitude, width, and velocity of the dark two-soliton remain
constant before and after the interaction, the dark two-soliton exhibits elastic interaction
during propagation.
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X 6 226 Y
(ay) t=—1

- Y
X 26 ~16

(bz) t=4 (b3) t=12

X 26 ~16 y

(e) t=4
Fig. 4. The spatial-temporal evolution of the dark two-soliton via Eq. (17). The parameters are
no=1,n5 =1, 0==1, py=2+i, py=1+i;@Q=1/10, 4, =2, 6,=27/3,0, =4n/5;
b) Q=1/10,4=2,6,=2n/3,0, =n/5;(c) 6, =2n/3,0,=n/5, Q=1/20, 4, =2;
(d) 6,=2r/3,0,=n/5 Q=1/20, 4 =-3;() 6, =27/3, 0,=7n/5 Q=1/4,y=2.
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Fig. 4 illustrates the dark two-soliton solution in terms of the coordinates x and y to

discuss the interaction properties of the dark solitons. Fig.4a depicts the overtaking
interactions between the two dark solitons, namely, the dark two-soliton propagates in the
same direction with different velocities. In Fig. 4b, dark two-soliton propagate along the
opposite direction, approaching and interacting with each other. After the interaction, the
amplitude and velocity changes of the two-solitons remain unchanged. Therefore, the dark
two-soliton interaction is elastic, and this property is consistent with the asymptotic analysis
of the dark two-soliton Eq. (27). At t =4, the effect of different parameters on the soliton
interaction is analyzed. In Fig. 4d, as the parameter ¢, is varied, the propagation direction of

the two-soliton changes, and the amplitude remains unchanged compared with Fig. 4b,. In
Fig. 4c, decreasing the strength of the harmonic potential parameter Q, the background
plane of the dark soliton is elevated while the soliton amplitude increases and two-soliton
velocity decreases. In Fig. 4d, increasing the strength of harmonic potential Q, the
background plane of the dark soliton is lowered while the amplitude of two-solitons
decreases; as the two-solitons are interact at this moment, the velocity increases.

5. Conclusion
In this paper, a (2+1)-dimensional three coupled GP system in spinor-1 BEC has been

investigated by the Hirota method. Via constructing the bilinear forms of Eq. (3), bright one-
solitons and bright two-solitons have been obtained when the system exhibits attractive
interactions In contrast dark one-solitons and dark two-solitons have been obtained when
the interactions is repulsive. We find that the amplitude of bright/dark solitons and the
background plane of dark solitons decreases with the increase of harmonic potential
strength, and vice versa. In addition, the elastic collision properties between solitons were
discussed. These results may be helpful in understanding the dynamical behavior of localized
waves in a (2+1)-dimensional spin-1 BECs. Lastly, we hope that the exact form of the soliton
structures obtained here may be profitably exploited in designing the optimal BEC

experiments.
Appendix
The parameters in Eq. (6) are listed as follows:
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Anomayis. Y yiii cmammi docaidxicyemvcss mpuse’sisane pisHaHHA ['pocca-Ilimaescbkozo 3
2apMOHIYHUM nomeHyiasom y (2+1)-eumipHoMy 603e-eliHumeliHiscbkoMy KoHdeHcami 3i
cniHom-1. 3a donomozorw 6iniHiliHO20 Memody Xipomu ompumaHo ceimai ma memHi
CONIMOHHI p036°A3KU cucmemu 3 83AEMO0IAMU NPUMA2AHHA MA 8I0WMOBXYBAHHSA, A MAKONC
HasedeHo amniaimydu ma weudkocmi yux coaimouis. Kpim moezo, npoaHanizo8aHo 6n/aus
2apMOHIYHO20 NomeHyiasy HA OUHAMIKY COAimMoOHI8 1 docaidxncyembess 83a€MO00ist Midc
cosnimoHamu 3a 0onoMoO2010 ACUMNMOMUYHO20 aHAAI3Y. Y pe3ysabmami eusie/neHo, Wo
amnaimyoda [ weudkicms conimoHI8 N08’13aHI 3 2apMOHIYHUM NOMEeHYIA10M, a 83AEMODIsT MiHC
deoma coalmoHaMu € NPYHCHOHK.

Kamouoei caoea: conaimon, 6iainitiHuii Memod Xipoma, acumnmomuy4Hull aHa.i3, KoHdeHcam
Bose-EtiHwumeltiHa
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