Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 5
CNOIDAL WAVES AND SOLITONS TO THREE-COUPLED NONLINEAR SCHRODINGER'S EQUATION WITH SPATIALLY-DEPENDENT COEFFICIENTS
Thilagarajah Mathanaranjan1, M.S. Mani Rajan2, S. Saravana Veni3 and Yakup Yildirim4,5
1Department of Mathematics and Statistics, University of Jaffna, Sri Lanka 2Department of Physics, Anna University, Madurai Region, Ramanathapuram, India 3Department of Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India 4Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey 5Department of Mathematics, Near East University, 99138 Nicosia, Cyprus
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 5 , pp. S1003 - S1016 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.S1003
ABSTRACT
Keywords:
Nonlinear Schrodinger equations with variable coefficient, extended auxiliary equation method, optical soliton, elliptic functions solutions
UDC:
535.32
- Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Applied Physics Letters, 23(3), 142-144. doi:10.1063/1.1654836
- Hasegawa, A., & Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Applied Physics Letters, 23(4), 171-172. doi:10.1063/1.1654847
- Kodama, Y., & Hasegawa, A. (1987). Nonlinear pulse propagation in a monomode dielectric guide. IEEE Journal of Quantum Electronics, 23(5), 510-524. doi:10.1109/jqe.1987.1073392
- Hasegawa, A., & Hirooka, T. (2000). Stable filter control of wavelength division multiplexed soliton systems. Electronics Letters, 36(1), 68-70. doi:10.1049/el:20000113
- Hasegawa, A. (2004). Application of Optical Solitons for Information Transfer in Fibers—A Tutorial Review. Journal of Optics, 33(3), 145-156. doi:10.1007/bf03354760
- Mollenauer, L. F., & Gordon, J. P. (2006). Solitons in Pptical Fibers: Fundamentals and Applications. Elsevier.
- Haus, H. A., & Wong, W. S. (1996). Solitons in optical communications. Reviews of Modern Physics, 68(2), 423.
- Mollenauer, L. F., Mamyshev, P. V., Gripp, J., Neubelt, M. J., Mamysheva, N., Grüner-Nielsen, L., & Veng, T. (2000). Demonstration of massive wavelength-division multiplexing over transoceanic distances by use of dispersion-managed solitons. Optics Letters, 25(10), 704-706. doi:10.1364/ol.25.000704
- Mamyshev, P. V., & Mollenauer, L. F. (1999). Soliton collisions in wavelength-division-multiplexed dispersion-managed systems. Optics Letters, 24(7), 448-450. doi:10.1364/ol.24.000448
- Sugahara, H., Kato, H., Inoue, T., Maruta, A., & Kodama, Y. (1999). Optimal dispersion management for a wavelength division multiplexed optical soliton transmission system. Journal of Lightwave Technology, 17(9), 1547. doi:10.1109/50.788560
- Jenkins, R. B., Sauer, J. R., Chakravarty, S., & Ablowitz, M. J. (1995). Data-dependent timing jitter in wavelength-division-multiplexing soliton systems. Optics Letters, 20(19), 1964-1966. doi:10.1364/ol.20.001964
- Sugahara, H., & Maruta, A. (1999, September). Timing jitter of a strongly dispersion managed soliton in a wavelength-division-multiplexed system. In Nonlinear Guided Waves and Their Applications (p. ThA4). Optica Publishing Group. doi:10.1364/nlgw.1999.tha4
- Matera, F., & Wabnitz, S. (1997). Periodic dispersion compensation of soliton wavelength division multiplexed transmissions with sliding filters. Optical Fiber Technology, 3(1), 7-20. doi:10.1006/ofte.1997.0198
- Mecozzi, A., Moores, J. D., Haus, H. A., & Lai, Y. (1991). Soliton transmission control. Optics Letters, 16(23), 1841-1843. doi:10.1364/ol.16.001841
- Assanto, G., & Smyth, N. F. (2020). Spin-optical solitons in liquid crystals. Physical Review A, 102(3), 033501. doi:10.1103/physreva.102.033501
- Li, B., Özdemir, Ş. K., Xu, X. W., Zhang, L., Kuang, L. M., & Jing, H. (2021). Nonreciprocal optical solitons in a spinning Kerr resonator. Physical Review A, 103(5), 053522.
- Porras, M. A. (2021). Spatiotemporal optical vortex solitons: Dark solitons with transverse and tilted phase line singularities. Physical Review A, 104(6), L061502. doi:10.1103/physreva.104.l061502
- Barashenkov, I. V., & Feinstein, D. (2021). Gyrating solitons in a necklace of optical waveguides. Physical Review A, 103(2), 023532. doi:10.1103/physreva.103.023532
- Jin, L., Hang, C., & Huang, G. (2023). Multidimensional optical solitons and their manipulation in a cold atomic gas with a parity-time-symmetric optical Bessel potential. Physical Review A, 107(5), 053501. doi:10.1103/physreva.107.053501
- Bai, Y., Zhang, M., Shi, Q., Ding, S., Qin, Y., Xie, Z., Jiang, X & Xiao, M. (2021). Brillouin-Kerr soliton frequency combs in an optical microresonator. Physical Review Letters, 126(6), 063901. doi:10.1103/physrevlett.126.063901
- Chen, Z., Xie, H., Li, Q., & Huang, G. (2019). Stern-Gerlach deflection of optical Thirring solitons in a coherent atomic system. Physical Review A, 100(1), 013827. doi:10.1103/physreva.100.013827
- Huang, T., Pan, J., Cheng, Z., Xu, G., Wu, Z., Du, T., Zeng, S. & Shum, P. P. (2021). Nonlinear-mode-coupling-induced soliton crystal dynamics in optical microresonators. Physical Review A, 103(2), 023502. doi:10.1103/physreva.103.023502
- Maitre, A., Lerario, G., Medeiros, A., Claude, F., Glorieux, Q., Giacobino, E., Pigeon, S. & Bramati, A. (2020). Dark-soliton molecules in an exciton-polariton superfluid. Physical Review X, 10(4), 041028. doi:10.1103/physrevx.10.041028
- Li, H., Peng, X., & Shi, Z. (2021). Vector solitons in nonlocal optical media with pseudo spin-orbit-coupling. Physical Review E, 103(2), 022205. doi:10.1103/physreve.103.022205
- Malomed, B., Peng, G. D., & Chu, P. L. (1999). Soliton wavelength-division multiplexing system with channel-isolating notch filters. Optics Letters, 24(16), 1100-1102. doi:10.1364/ol.24.001100
- Moores, J. D. (1992). Ultra-long distance wavelength-division-multiplexed soliton transmission using inhomogeneously broadened fiber amplifiers. Journal of Lightwave Technology, 10(4), 482-487. doi:10.1109/50.134202
- Kivshar, Y. S. (1993). Dark solitons in nonlinear optics. IEEE Journal of Quantum Electronics, 29(1), 250-264. doi:10.1109/3.199266
- Kivshar, Y. S., & Luther-Davies, B. (1998). Dark optical solitons: physics and applications. Physics Reports, 298(2-3), 81-197. doi:10.1016/s0370-1573(97)00073-2
- Zhou, Q., Xu, M., Sun, Y., Zhong, Y., & Mirzazadeh, M. (2022). Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons. Nonlinear Dynamics, 110(2), 1747-1752. doi:10.1007/s11071-022-07673-3
- Yang, S., Zhang, Q. Y., Zhu, Z. W., Qi, Y. Y., Yin, P., Ge, Y. Q., Li, L., Jin, L., Zhang, L., & Zhang, H. (2022). Recent advances and challenges on dark solitons in fiber lasers. Optics & Laser Technology, 152, 108116. doi:10.1016/j.optlastec.2022.108116
- Wazwaz, A. M. (2020). Optical bright and dark soliton solutions for coupled nonlinear Schrödinger (CNLS) equations by the variational iteration method. Optik, 207, 164457. doi:10.1016/j.ijleo.2020.164457
- Karjanto, N., Hanif, W., Malomed, B. A., & Susanto, H. (2015). Interactions of bright and dark solitons with localized PT-symmetric potentials. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(2). doi:10.1063/1.4907556
- Yu, G. F., Xu, Z. W., Hu, J., & Zhao, H. Q. (2017). Bright and dark soliton solutions to the AB system and its multi-component generalization. Communications in Nonlinear Science and Numerical Simulation, 47, 178-189. doi:10.1016/j.cnsns.2016.11.014
- Zhang, Y., Yang, C., Yu, W., Liu, M., Ma, G., & Liu, W. (2018). Some types of dark soliton interactions in inhomogeneous optical fibers. Optical and Quantum Electronics, 50, 1-8. doi:10.1007/s11082-018-1560-7
- Chen, W., Shen, M., Kong, Q., & Wang, Q. (2015). The interaction of dark solitons with competing nonlocal cubic nonlinearities. Journal of Optics, 44, 271-280. doi:10.1007/s12596-015-0255-8
- Xu, S. L., Petrović, N., & Belić, M. R. (2015). Two-dimensional dark solitons in diffusive nonlocal nonlinear media. Journal of Optics, 44, 172-177. doi:10.1007/s12596-015-0243-z
- Yu, W., Ekici, M., Mirzazadeh, M., Zhou, Q., & Liu, W. (2018). Periodic oscillations of dark solitons in nonlinear optics. Optik, 165, 341-344. doi:10.1016/j.ijleo.2018.03.137
- Wang, S. (2023). Novel soliton solutions of CNLSEs with Hirota bilinear method. Journal of Optics, 1-6. doi:10.1007/s12596-022-01065-x
- Zhao, X. H. (2021). Dark soliton solutions for a coupled nonlinear Schrödinger system. Applied Mathematics Letters, 121, 107383. doi:10.1016/j.aml.2021.107383
- Serkin, V. N. (2018). Busch-Anglin effect for matter-wave and optical dark solitons in external potentials. Optik, 173, 1-12. doi:10.1016/j.ijleo.2018.08.002
- Kopcasız, B., & Yaşar, E. (2022). The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger’s equation with new mechanisms. Journal of Optics, 1-15. doi:10.1007/s12596-022-00998-7
- Qin, Y. H., Zhao, L. C., Yang, Z. Q., & Ling, L. (2021). Multivalley dark solitons in multicomponent Bose-Einstein condensates with repulsive interactions. Physical Review E, 104(1), 014201. doi:10.1103/physreve.104.014201
- Chen, J., Chen, Y., Feng, B. F., & Maruno, K. I. (2015). Multi-dark soliton solutions of the two-dimensional multi-component Yajima–Oikawa systems. Journal of the Physical Society of Japan, 84(3), 034002. doi:10.7566/jpsj.84.034002
- Singh, M., Sharma, A. K., & Kaler, R. S. (2011). Investigations on optical timing jitter in dispersion managed higher order soliton system. Journal of Optics, 40, 1-7. doi:10.1007/s12596-010-0021-x
- Janyani, V. (2008). Formation and Propagation-Dynamics of Primary and Secondary Soliton-Like Pulses in Bulk Nonlinear Media. Journal of Optics, 37, 1-8. doi:10.1007/bf03354831
- Zheng, Y., Wang, M., Zhao, R., Zhang, H., Liu, D., & Li, D. (2020). Nonlinear optical absorption properties of zirconium selenide in generating dark soliton and dark-bright soliton pairs. Applied Optics, 59(2), 396-404. doi:10.1364/ao.377776
- Zhang, S., Bi, T., Ghalanos, G. N., Moroney, N. P., Del Bino, L., & Del’Haye, P. (2022). Dark-bright soliton bound states in a microresonator. Physical Review Letters, 128(3), 033901. doi:10.1103/physrevlett.128.033901
- Priya, N. V., & Senthilvelan, M. (2016). N-bright–bright and N-dark–dark solitons of the coupled generalized nonlinear Schrödinger equations. Communications in Nonlinear Science and Numerical Simulation, 36, 366-377. doi:10.1016/j.cnsns.2015.12.016
- Kudryashov, N. A. (2022). Bright and dark solitons in a nonlinear saturable medium. Physics Letters A, 427, 127913. doi:10.1016/j.physleta.2021.127913
- Rao, J., Kanna, T., Sakkaravarthi, K., & He, J. (2021). Multiple double-pole bright-bright and bright-dark solitons and energy-exchanging collision in the M-component nonlinear Schrödinger equations. Physical Review E, 103(6), 062214. doi:10.1103/physreve.103.062214
- Lü, X., Ma, W. X., Yu, J., Lin, F., & Khalique, C. M. (2015). Envelope bright-and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dynamics, 82, 1211-1220. doi:10.1007/s11071-015-2227-6
- Xie, X. Y., Liu, Z. Y., & Xu, D. Y. (2020). Bright-dark soliton, breather and semirational rogue wave solutions for a coupled AB system. Nonlinear Dynamics, 101(1), 633-638. doi:10.1007/s11071-020-05794-1
- Guo, B., Yao, Y., Tian, J. J., Zhao, Y. F., Liu, S., Li, M., & Quan, M. R. (2015). Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 27(7), 701-704. doi:10.1109/lpt.2015.2390212
- Thi, T. N., & Van, L. C. (2023). Supercontinuum generation based on suspended core fiber infiltrated with butanol. Journal of Optics, 1-10. doi:10.1007/s12596-023-01323-6
- Li, Z., & Zhu, E. (2023). Optical soliton solutions of stochastic Schrödinger–Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity. Journal of Optics, 1-7. doi:10.1007/s12596-023-01287-7
- Zhang, R. F., Li, M. C., & Yin, H. M. (2021). Rogue wave solutions and the bright and dark solitons of the (3+ 1)-dimensional Jimbo–Miwa equation. Nonlinear Dynamics, 103, 1071-1079. doi:10.1007/s11071-020-06112-5
- Oreshnikov, I., Driben, R., & Yulin, A. V. (2015). Weak and strong interactions between dark solitons and dispersive waves. Optics Letters, 40(21), 4871-4874. doi:10.1364/ol.40.004871
- Tang, L. (2023). Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation. Journal of Optics, 1-10. doi:10.1007/s12596-023-01097-x
- Nandy, S., & Lakshminarayanan, V. (2015). Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions. Journal of Optics, 44, 397-404. doi:10.1007/s12596-015-0270-9
- Zeng, L., Konotop, V. V., Lu, X., Cai, Y., Zhu, Q., & Li, J. (2021). Localized modes and dark solitons sustained by nonlinear defects. Optics Letters, 46(9), 2216-2219. doi:10.1364/ol.424389
- Ma, P., Li, J., Zhang, H., & Yang, Z. (2020). Preparation of high-damage threshold WS2 modulator and its application for generating high-power large-energy bright-dark solitons. Infrared Physics & Technology, 105, 103257. doi:10.1016/j.infrared.2020.103257
- Reham, M. S., Mohamed, E. A., Anjan, B., Yakup, Y., Houria, T., Luminita, M., Catalina, I., Lucian, G.P. & Asim, A. (2023). Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian Journal of Physical Optics, 24(3), 248-261. doi:10.3116/16091833/24/3/248/2023
- Arnous Ahmed, H., Anjan, B., Yakup, Y., Luminita, M., Catalina, I., Lucian, G. P., & Asim, A. (2023). Optical solitons and complexitons for the concatenation model in birefringent fibers. Ukrainian Journal of Physical Optics, 24(4), 04060-04086. doi:10.3116/16091833/24/4/04060/2023
- Jawad, A., & Abu-AlShaeer, M. (2023). Highly dispersive optical solitons with cubic law and cubic-quintic-septic law nonlinearities by two methods. Al-Rafidain Journal of Engineering Sciences, 1-8. doi:10.1016/j.rinp.2020.103021
- Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398. doi:10.1007/s12596-022-00963-4
- Han, T., Li, Z., Li, C., & Zhao, L. (2023). Bifurcations, stationary optical solitons and exact solutions for complex Ginzburg–Landau equation with nonlinear chromatic dispersion in non-Kerr law media. Journal of Optics, 52(2), 831-844. doi:10.1007/s12596-022-01041-5
- Rajan, M. M., Mahalingam, A., & Uthayakumar, A. (2014). Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation. Annals of Physics, 346, 1-13. doi:10.1016/j.aop.2014.03.012
- Zayed, E. M., & Abdelaziz, M. A. M. (2011). Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine–cosine and the exp-function methods. Applied Mathematics and Computation, 218(5), 2259-2268. doi:10.1016/j.amc.2011.07.043
- Zayed, E. M. E., & Alurrfi, K. A. E. (2016). Extended auxiliary equation method and its applications for finding the exact solutions for a class of nonlinear Schrödinger-type equations. Applied Mathematics and Computation, 289, 111-131. doi:10.1016/j.amc.2016.04.014
- Lan-Fang, S., Cai Sheng, C., and Xai –Chun, Z. (2011). The extend auxiliary equation method for the KdV equation with variable coefficient. Chinese Physics B, 20(10), 100507. doi:10.1088/1674-1056/20/10/100507
- Kumar, S., Kumar, A., & Wazwaz, A. M. (2020). New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. The European Physical Journal Plus, 135(11), 1-17. doi:10.1140/epjp/s13360-020-00883-x
- Malik, S., Almusawa, H., Kumar, S., Wazwaz, A. M., & Osman, M. S. (2021). A (2+ 1)-dimensional Kadomtsev–Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions. Results in Physics, 23, 104043. doi:10.1016/j.rinp.2021.104043
- Ma, Y. L., Wazwaz, A. M., & Li, B. Q. (2021). New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dynamics, 104, 1581-1594. doi:10.1007/s11071-021-06357-8
- Akbar, M. A., Wazwaz, A. M., Mahmud, F., Baleanu, D., Roy, R., Barman, H. K., Mahmoud, W., Al Sharif, M.A., & Osman, M. S. (2022). Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme. Results in Physics, 43, 106079. doi:10.1016/j.rinp.2022.106079
-
У цій статті використовується метод розширеного допоміжного рівняння для отримання точних розв’язків нелінійних рівнянь Шредінгера зі змінним коефіцієнтом. У результаті отримані розв’язки ізольованих хвиль, розв’язки тригонометричних функцій, розв’язки раціональних функцій та розв’язки еліптичних функцій Якобі. Солітони однозначно існують за умови, що коефіцієнти хроматичної дисперсії інтегровні за Ріманом. Крім того, деякі з отриманих рішень представлені 3D і 2D графіками, щоб продемонструвати поведінку рішень. Результати показують, що метод розширеного допоміжного рівняння за допомогою комп’ютерної системи символьних обчислень є надійним та ефективним у знаходженні різних точних розв’язків нелінійних еволюційних рівнянь зі змінними коефіцієнтами в математичній фізиці.
Ключові слова: Nonlinear Schrodinger equations with variable coefficient, extended auxiliary equation method, optical soliton, elliptic functions solutions
© Ukrainian Journal of Physical Optics ©