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Abstract. This paper uses the extended auxiliary equation method to obtain the exact solutions of the
nonlinear Schrodinger equations with variable-coefficient. As a result, solitary wave solutions, trigonometric
function solutions, rational function solutions, and Jacobi elliptic functions solutions are obtained. The solitons
are guaranteed to exist, provided the chromatic dispersion coefficients are Riemann integrable. Further, some
of the obtained solutions are presented by 3D and 2D graphs to demonstrate the behavior of solutions. The
results show that the extended auxiliary equation method, with the help of a computer symbolic computation
system, is reliable and effective in finding various exact solutions of nonlinear evolution equations with
variable coefficients in mathematical physics.
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1. Introduction
Optical solitons are solitary light waves indeed played a significant role in the revolution of

optical communications. In the context of optical fibers widely used for long-distance
communications, solitons can counteract the dispersion that causes signal degradation over
long distances. One of the major advantages of solitons is their ability to propagate over long
distances without significant distortion. They maintain their shape and quality, allowing for
high-speed and long-haul data transmission. This characteristic makes it ideal for applications
in telecommunications, where the demand for higher bandwidth and faster data rates
continues to grow. The breakthrough in using solitons for optical communications Akira
Hasegawa and coworkers demonstrated the transmission of soliton pulses over long distances
in optical fibers [1-5]. This discovery paved the way for a new era in high-capacity optical
communication systems [6]. In [7], the history of solitons used for optical communications and
the technical development of soliton transmission is reviewed, and the cause of bit errors in
long-distance soliton transmission is presented. The interaction of solitons and amplifier noise
prevents their use in high-capacity transoceanic submarine systems unless frequency and
timing controls are employed, for example, through the simple insertion of in-line bandpass
filters. In addition to their use in long-haul communications, solitons have also found
applications in other areas of optical communications. For example, they are utilized in
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ultrafast laser systems for generating short and intense pulses used in scientific research,
medical imaging, and industrial applications. The revolution in soliton-based optical
communications has led to significant advancements in the field, including increased data
transmission rates, improved signal quality, and extended reach of optical networks. These
developments have played a crucial role in shaping the modern telecommunications
infrastructure and facilitating the growth of digital technologies. It's worth noting that while
solitons have brought about a revolution in optical communications, they are just one aspect of
the broader advancements and innovations in the field. Many other technologies in fiber optics,
wavelength division multiplexing, and advanced modulation formats have contributed to the
progress in optical communications alongside solitons. Solitons have been instrumental in
enabling high-capacity optical communication systems such as dense wavelength division
multiplexing (DWDM), where multiple information channels can be transmitted
simultaneously over a single optical fiber using different wavelengths [8-12]. By leveraging
solitons, DWDM systems can transmit terabits of data over long distances [13, 14].

In the framework of nonlinear spin optics self-confined light beams in reorientation
nematic liquid crystals have been investigated using modulation theory and numerical
experiments [15]. Experimental results of nonreciprocity from the relativistic Sugnac - Fizeau
Optical drag effect by proposing a spinning nonlinear resonator to achieve non-reciprocal
control of optical solitons [16]. The vortex solitons are described in self-defocusing Kerr -
media whose phase line is not parallel to the propagation direction but is perpendicular (or)
titled almost arbitrary angles [17]. Gyrating solitons in a circular array of 2N coupled nonlinear
optical waveguides, their stability, and tuning the gain-loss coefficient have been analyzed [18].
A scheme is proposed to realize an optical Bessel potential with parity-time (PT) symmetry and
investigate the existence, propagation, and manipulation of multidimensional optical solitons
through the interplay among diffraction, Kerr nonlinearity, and potential confinement in a cold
atomic gas under the condition of electromagnetically induced transparency (EIT) [19]. The
intracavity Brillouin laser pumping scheme enabled access to the soliton states with a blue-
detuned input pump through an easy operation of the Brillouin Kerr soliton microcomb with
excellent performance, making the scheme promising for practical applications [20]. The giant
enhancement of the cross—phase modulation for the two polarization components of the probe
pulse can be obtained under the condition of double EIT and shows the system supports the
stable temporal optical thirring solitons, which have ultralow generation power and ultrashort
propagation velocity [21]. The generation of soliton crystals is investigated in the presence of
nonlinear mode coupling, which can induce a modulation on the background wave and modify
the cavity dynamics under the condition of suitable wave vector mismatch, nonlinear coupling
coefficient, and highly deterministic perfect soliton crystals [22]. It is reported that exciton-
polariton superfluids can also sustain dark-soliton molecules, although the interactions are
connected to the driven dissipative nature of the polariton fluid [23]. The existence and
stability of nonlocal vector solitons with Pseudo-Spin-Orbit coupling are investigated, and the
results show symmetric and non-central symmetric vector solitons [24]. Also, Bright solitons
can compress optical signals by converting long-duration pulses into shorter ones. This
compression technique allows for higher data transmission rates and increased bandwidth
efficiency. These can counteract the dispersion effects, which is the broadening of optical
pulses as they propagate through the fiber. The nonlinear property of bright solitons helps
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compensate for dispersion, enabling long-haul transmission of data without significant signal
degradation. Bright solitons are used in wavelength-division multiplexing (WDM) systems to
transmit multiple information channels simultaneously over a single fiber. The robust nature of
solitons allows for efficient isolation and transmission of individual channels without
interference. Dark solitons can separate individual channels in WDM systems [25, 26]. By
utilizing the dark regions of the soliton, different channels can be effectively isolated and
transmitted without interference [27-30]. Dark solitons can be manipulated to switch on or off
certain channels within a WDM system [31-41]. The dark solitons can be adjusted by applying
appropriate control signals to block or transmit specific channels, allowing for dynamic and
reconfigurable optical networks [42-49]. It's important to note that bright and dark solitons
have unique characteristics and applications within fiber optic communication systems [50-
66]. Their properties, such as intensity distribution and interaction behaviors, enable different
functionalities that contribute to the efficient transmission and manipulation of optical signals
in high-speed communication networks.

Putting forth the above novelty of applications of optical solitons, we derive novel
solutions of bright and dark solitons of three coupled nonlinear Schrédinger equation (3-
CNLS) with variable coefficient in this paper. Consider the 3-CNLS with the variable
coefficient of the form [67]

iy, + 50 (2) e+ B(2) [ + ol + [ o 7 (2)01 =0,

i ;m%w )+ "+l ) -i7 ()0 = 0, &)

i3, + 1 a(z)pse +B(z (|¢1| |¢2| |¢3|) ¢3—ir(z)¢5 =0,

where ¢; is the complex amplitude of the j -th-field component (j=1,2,3) of the variables

z,t and «a(z),B(z),y(z) are the group velocity dispersion (GVD), nonlinearity, and fiber

gain/loss coefficients, respectively [67]. Eq. (1) has been considered as a model to describe
the amplification or attenuation of the picosecond pulse propagation in the inhomogeneous
multicomponent optical fiber with different frequencies or polarizations. In [68], based on
the Lax pair, infinitely many conservation laws of Eq. (1) are obtained. The authors of
reference [68] have discovered an uncountable or infinite number of these conservation laws
that often involve quantities like energy, momentum, charge, or other physical properties.
This is a valuable insight for understanding the behavior of the system and can have
important implications for physics or mathematics. Further, two mixed-type vector soliton
solutions are derived via the Hirota method and symbolic computation.

This paper mainly aims to derive various types of new exact solutions to the considered
model using the extended auxiliary equation method. The proposed method has gained
considerable attention in recent years, and many researchers have utilized various nonlinear
models [69-74].

2. Description of the extended auxiliary equation method
This section provides a quick overview of the extended auxiliary equation method [70]. First,

consider the nonlinear variable coefficient evolution equation with independent variables

Z =(z,t) and dependent variable u :
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F (U, Uy, Uy Upy Upg Uy o) = 0, 2
where u=u(z,_t) is an unknown function, F is a polynomial in u, and u,,u,,u,,,Uy,u,, is its

various partial derivatives.
Step 1. We assume that Eq. (2) has solutions of the form:

u(Z):iai(Z)Fi(e:)Jrao(Z) . ay(2)=0, 3)

where n is an integer to be determined by balancing the highest-order derivative terms in
Eq.(2), a;(Z)(i=0,1,..,n) and &£=&(Z) are all functions of Z to be determined later.

F =F(&) is a solution of the following auxiliary ordinary differential equation:

F2(&)=cy+ciF(E)+coF2(E)+c3F3(E)+cyF4(E), (4
where F'= j—g, ¢;(i=0,1,..,4) are constants, hence we have

FF' = %F’ +C,FF' +%C3F2F' +20,F3F, (5)

F" = cyF' +3c5FF' + 60, F2F", (6)

where F' is the derivative of polynomial with respectto &.
Step 2. Substituting Eq. (3) into Eq. (2) and using Eqs. (4-6), and then setting the coefficients

of FiFj (i =0,1,2,.,j= 0,1,2,...) to zero, we obtain a set of over-determined partial differential
equations (PDEs) for a;(Z),(i=0,1,..,n) and & =¢&(Z).

Step 3. Solve the over-determined PDEs obtained in Step 2 for ¢;(Z) (i=0,1,..,n) and
& =¢(Z) using Mathematical software.

Step 4. Substituting a;(Z)(i=0,1,..,n) and & =¢&(Z) obtained in the above steps and well-
known solutions F(g) of Eq. (4) (see in [70]) into Eq. (3), we obtain the exact solutions of

Eq. (2).

3. Implementation of the proposed method
In order to obtain the exact solution of Eq.(1), firstly, we assume that the wave

transformation of the form

¢j=vj(z,t)ei“(z't), j=1,23, (7
where v(zt) and u(zt) are amplitude and phase functions, respectively. Substituting
Eg. (7) into Eq. (1) and separating the real and imaginary parts, we get

Zﬂ(z)(vj(z,t)vl(z,t)2 +v;(z,t)vy(z,t)2 +vj(z,t)v3(z,t)2)

—oz(z)(vj(z,tf)ujt(z,t)2 —Vj (z,t))—Zvj(z,t)ujZ(z,t) =0,

—Zy(z)vj (zt)+ Za(z)ujt (z,t)vjt (zt)

+a(z)vj(z,t)ujtt(z,t)+ 2ij(z,t) =0,

(8)

9)

where j=1,2,3. Balancing the highest order derivative terms with the nonlinear terms in

Eq. (8), we obtained n=1 in Eq. (3). Thus, we have
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E=p(z)t+q(z), u(z,t)=T(z)t+Q(z), (10)
and

uy(50)= £(2)+0,(2)F(E), j-123 ()
where T'(z),Q(z), f;(2), f,(2z) are functions of z to be determined, p(z) and q(z) are

related to pulse width and group velocity, respectively.

Substituting Egs. (10) and (11) into Egs.(8) and (9) and setting each
coefficient of polynomial in FiF'J (ij=0, 1, 2, 3) to zero, we obtain a set of over-determined
PDEs for I'(z),Q(z), fi(2), fo(2),p(z) and q(z).By solving the above system of PDEs with

the help of Mathematica, we obtain the following two types of results:
Result 1:

c1=c3=0, T'(2)=0, I'(z)=4,
p(z)=4, fi(2)=fo(2)= f3(2)=0,

1(2) = Agel7 (2, g, (2) = Aselr(2)ez,

95(2) = Asel 722, q(2) = A = M4yl () dz , (12)
(z)=4, +%(—A% +A3cy)] a(z)dz,

Q

=)

e2l7(2)dzA2c,0(z)
A2+ AZ+ A2

B(z)=

where 4; with (i =0,1, 2, 3,4) are arbitrary constants. We substitute this result into Eq. (7)

’

along with Egs. (10) and (11) to obtain the fundamental solutions of Eq. (1), which depend
on the solution F(&) of Eq. (4). Given different values of ¢; (i=0,2,4), Eq. (1) has many

kinds of solutions, which are listed below:
1.1f ¢; =0, ¢; >0, ¢, <0, then the Eq. (1) has the bright soliton solutions:

¢ (z,t) = Agel7(2)dz /—C—Z sech[\/a é‘]
Cq

(13)
Xei(A1t+A,+%(—AIZ+A22c2)I a(z)dz)’
$(2,t) = Aelr(2)dz /—C—z sech[\/a §J
Cy (14)
Xei(A1t+A7+%(fAf+A§cz)f a(z)dz)
¢5(z,t)= Asel7(2)dz /—C—Z sech[\/a 5}
Cy (15)

Xei(Alt+A,+%(—A12+A§cz)I a(z)dz)

)

where &= Ayt + Ag — A Ay ot (2)dz
The bright solitons (13)-(15) will exist provided a(z) is Riemann integrable. For the

choice of sinusoidal function for inhomogeneous profiles, a soliton is transmitted as a snake
soliton through the multimode fiber as shown in Fig. 1(a). Moreover, we infer that the period
of oscillation, width, and intensity of soliton is invariant as depicted in Fig. 1(b).
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Fig. 1. One bright soliton evolution (a) and density plot (b).

As portrayed in Fig.2 (a), a bright soliton propagates through an inhomogeneous
multimode fiber without gain or loss. It shows the stable propagation of optical soliton
where amplitude, width, and phase are constant along the propagation direction. This is a
significant property of optical solitons.

1.0

-

0.5
642
0.0

—4}

0 2 4 6 8 10 12 14
(a) 5 (b)
Fig. 2. One bright soliton evolution(a) and density plot (b).

One bright soliton gets compression during the propagation in a three-core or three-mode
inhomogeneous optical fiber. Till reaching the z=0, no change in the width of the optical
soliton as clearly shown in Fig. 3 (a). In practice, pulse compression can be achieved by
employing dispersion decreasing fiber where dispersion is gradually decreasing in the fiber
core.

-5 0 5 10 15

(a) . (®)

Fig. 3. One bright soliton evolution (a) and density plot (b).
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2.1f ¢y = :(:24 ¢, <0,c, <0, then the Eq. (1) has the dark soliton solutions:
¢ (z,t)= A3ef?’(z)dz\/zic4 tanh: —%2 f:ei(A‘t+A7+§(_A%+AZZCZ)Ia(z)dz), (16)
$(z,t) = Ayelr(2)dz 2Cc24 tanh_ —%2 5_ei(A1t+A7+%(_A%+AZZCZ)Ia(z)dz), (17)
¢3(z,t)= Asel7(2)dz 264 tanh: —%2 5_ ei(AltﬁgJ%(_AH'LIZZCZ)I a(z)dz), (18)

where & = Ajt + Ag — AAy [ a(2)dz

The soliton pulse is compressed when propagating through a three-mode optical fiber
with a specific dispersion profile. When compared with the compression of bright soliton,
width is gradually reduced along the propagation as displayed in Fig. 4 (a). Here phase and
width are simultaneously varying in the fiber optic communication system.

tn

(a) % (b)
Fig. 4. Dark soliton progation (a) and corresponding density plot (b).
As shown in Fig. 5 (a), dark soliton is periodically oscillated with constant oscillation and
width. In the lossless fiber, dark soliton propagated without attenuation as clearly shown in
Fig. 5 (a). The oscillating behavior of soliton is called snake soliton.

0 2 4 6 8§ 10 12 14

(@) ¥ (b)

Fig. 5. Periodic evolution of dark soliton (a) and corresponding density plot (b).
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2
3.If ¢g= C—Z, ¢y <0,¢4 >0, then the Eq. (1) has the trigonometric function solutions:

4c,
¢1( ) A3eI7(Z)dZ LC_ SEC[\/: §j| i(Alt+A7+%(—A12+A§cZ)Ia(z)dz)’ (19)

1 2 2,
¢ (z,t) = Agelr(2)dz sec J—c é (A1t+A’+§(_A1+A2C2)ja(z)dz), (20)
1 2 2
¢3( A5ef7 ,__ sec (A1t+A7+E(7A1+A2c2)fa(z)dz)’ 21)
where &= Ayt + Ay — A4, (z)dz while, if ¢ =4— ,¢,>0,c, <0, then the Eq. (1) has the
Cq

following trigonometric function solutions:

b (2.t) A3efy 2)dz f C_Zé: ei(Alt+$+%(fAf+A§cz)Ia(z)dz)’ 22)
by (2,6) = Agel )iz / %25 ei(Alt+A7+%(—A12+AZZCZ)Ia(z)dz), (23)

] 1 2+Ac, ) alz)dz
by (.6) = Al ()0 / %2 ¢ ez(A1t+A7+E(—A1+Az D a(z)d ) 24)

where & = Ayt + Ag — A4y | (2)dz

4.1f ¢y =c, =0,c4 <0, then the Eq. (1) has the rational function solution:

(At+A+ (—Az+Az, )ja(z)dz)

¢ (z,t)=—Azelr(2)dz = = (25)
¢2(z,t)=—A4ej7(Z)dZﬁ ei(A1t+14L+%(—A12+A§CZ)fa(z)dz)’ 26)
by (2,6) =gl 1(2)d \/72: i(Alt+A7+%(—A12+A§cz)fa(z)dz)' 27
where &= Ayt + Ag — A Ay o (2)dz
5. ¢y=- M ,¢;>0,¢,<0, (where m denotes the modulus of Jacobi elliptic

c,(2m2 - 1)

function, where 0<m<1) then the Eq. (1) has the Jacobi elliptic solutions:

_ . )
= Aelr(z)dz cm2 c, 1A1t+A7+—(—A12+Azzcz)ja(z)dz)
¢1(Z,t) Agelt \/ 64(2m2 _1) cn (2m2—1) & e( 2 , (28)

oy e [ [ g i Aca Lt a(z)do
¢, (z.t)=A,e'7(2) \/ o 2m=1) cn \/(Zmz—l) 3 e( 2 ), (29)

_ - )
= Acelr(2)dz cym? &) i At+A+(-Az+agc, ) o(z)dz
¢3(z,t)=Aselr \/ 1) cn_ (2m2—1) 3 e( 2 ), (30)
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Note that, if m— 1, then cné — sech, then we have the same bright soliton solutions

(13), (14), and (15).

c(1-m2) S .
6.1f ¢o = ( _)2' ¢, >0, ¢, <0, then the Eq. (1) has the Jacobi elliptic solutions:
cy(2—m2
_ - .
t)=A 17(2)dz Cy d Cy 1(A1t+4+5(—A12+A22c2)fa(z)dz)’ 31
¢1(Z ) 3€ \/ c4(2—m2) n \/(Z—mZ) ¢ le (31)
_ - .
)= Agelrz)dz |-—2__gq % ’(Al”*”*g(*f‘f“*%cz)fa(z)dz), 32
¢Z(Z ) 4€ \/ C4(Z—m2) n \/(Z—mz)é e (32)
i 1. 1
,t)=A [7(2)dz 2 d &) ’(A1f+A7+E(—A12+A%CZ)fa(z)dz)’ 33
¢3(Z ) 5€ \/ C4(2—m2) n_\/(Z—mZ) é_e (33)

where & = Ayt + Ag — A Ay [ o (2)dz
Note that, if m— 1, then dné — sech& , then we have the same bright soliton solutions
(13), (14), and (15).

2m?2
7.1f ¢y = eill 5 €2>0, ¢y <0, then the Eq. (1) has the Jacobi elliptic solutions:
cy(m2+1)
2 I — i 1 l —A2 2 j dz
z,t) = Ael 7(2)dz oM sn €2 e'(AlHA’Jrz( Ap+tie,) a(z) ), 34
h(zt)=4 J ca(mz 1) |2 e1) 54
2 - 1 i aea+L(-areze,)] a(z)dz
zt)=A,elr(z)dz | 2M sn 2 el( ' g\ TR , 35
holzt) =44 \/ camer1) ) (3)
2 i — i i l —A2+ A2
¢3(Z,t)=A56I7(Z)dZ com sn Cy £ el(A1t+A7+2( A1+Azcz)fa(z)dz)’ (36)
cy(m2+1) (m2+1) 7|

where & = Ayt + Ag — A Ay [ e (2)dz
Note that, if m— 1, then sné — tanh&, then we have the same dark soliton solutions

(16), (17), and (18).
Result 2:

co=¢,=0,T"(2)=0,T(2)=4., p'(2)=0, p(2)=4,,
91(2) = Agel7(2)dz, 92( )= Ayelr(z)dz,
95(2) = Al 1%, q(2) = Ag - A Ay a(2)dz
fi(z) = Aselr(z)dz fz() Agelr(2)dz, (37)
f3(2) = Age! 1(2)4

Q(z) =4y —@(Af,qg +2434%c, )| o(z)dz

AgeI 7z

e~217(2)dz A2c 0 (2)
A2+ A2 + A?

B(z)=
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We substitute this result into Eq. (7) along with Egs. (10) and (11) to obtain the fundamental
solutions of Eq. (1) which depend on the solution F(&) of Eq. (4). Given different values of

¢; (i=2,3,4), Eq. (1) has the following soliton solutions:

c, sech[%\/a 5]2
2Jcrcs tanh[%\/g 5}—% (38)

i[Alt+Aw—i(Alesz+2nggc4)I a(z)dz]
xe 242

by (2.t) =| Al ()07 1 Agel1(2)iz

’

2
c, sech[%\/a 5}
2\/coCy tanh[%\/a f}—c@ (39)

¢ (z,t)=| Agelr(2)dz + A ely(2)dz

i| A+ A, -1 (AzAz+24343¢,)] o(2)dz
xe 242

)

Cy sech[%\/a 5}2

¢3(2,t)=| Agel7(2)dz 1 Acelr(2)dz
2\/CyCy tanh[%\/g 5} —C3 (40)

i[AimAm—i(AgAgﬂA;AgQ)I a(z)dzj
xe 24

)

44, e, = HoCy 4= A;A,

where &=At+Aq—Adla(z)dz , c,= yrRE and Ag=—"2
5

4s 45 45
Provided that ¢, >0 and A; #0.

We observe kink and anti-kink solitons in a three-mode optical fiber system when
control parameters are appropriately adjusted. The three-dimensional schematic
propagation of kink and anti-kink solitons is propagating in opposite directions, as
illustrated in Fig.6(a) and 6(b). In the constant values, the positive and negative signs
determine the kink and anti-kink solitons, respectively. On the other hand, the velocity and
amplitude of kink solitons are determined by constant values present in the obtained
solutions. As seen in Fig. 6, the shape of both kink and anti-kink solitons are unchanged
during the propagation, which is the same as that of optical solitons.

10

2 ¢l
0

(@)

Fig. 6. Plot for kink soliton(a) and plot for anti-kink soliton (b).
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A;A ALA
Since c3 =2\/c,¢4 , Ay :%, and Ag = jl 2, solution (38), (39) and (40) degenerate to the
5 5

following soliton solutions:

| At+a, L (Ardz+24382¢,)] a(z)d )
b (2,0) = —28% ol (2)iz tanh{ﬁ\/a f}el[ Fh T M| 4y
4 As
i L (mAz+2m42,) a(z)d J
by(2,t) =249 oly()iz vann| 20 e, & e gt ot ., (42)
4s As
.Al \)_LAEASZ ZAZZ 24~[ d]
by (2,6) = ~Agel(2)dz tanh{%\/a g}e'[ e a2 | (43)
5

4. Conclusions
In this study, the extended auxiliary equation method is described to obtain more exact

solutions of the nonlinear Schrodinger equation with variable coefficients. Using the
proposed method we successfully obtained some new exact solutions to the equation under
different conditions. These exact solutions include solitary wave solutions, trigonometric
function solutions, rational function solutions, and Jacobi elliptic function solutions. The
characteristics of some obtained solutions are analyzed via 3D and density plots. The results
show that the extended auxiliary equation method is direct, powerful, and can be used for
many other high-dimensional nonlinear differential equations in mathematical physics.
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AHomayis. Y yiti cmammi aukopucmogyemucsi Memoo po3wUPeH020 JONOMINCHO20 PIBHSIHHS
04151 OMPUMQHHSI MOYHUX pO38°s13Ki8 HesalHilHUX pieHsHb Ilpedineepa 31 3MiHHUM
koegpiyiecnmom. Y pe3yabmami OMpuMaHi po38’A3KU i30/1b0BAHUX X8UJ/b, PO38’SI3KU
mpuzoHomempu4Hux (GYHKYill, p038’sa3Ku payioHasnbHUx GyHKYill ma po36’si3ku eAinMmuyHUX
¢yHkyiill HAko6i. ConimoHu 00HO3HAYHO ICHYHOMb 304 yMO8U, WO KoepiyieHmu Xpomamu4Hoi
ducnepcii iHmezpogHi 3a PimaHom. Kpim mozo, desiki 3 ompumaHux piweHb npedcmasaeHi 3D i
2D epagpikamu, ujo6 npodemoHcmpysamu nogediHKy piuleHb. Pe3yabmamu nokazyroms, ujo
Memod po3WUpPeHo20 O0ONOMINCHO20 PpIBHSAHHA 3a 00NOMO02010 Komn'iomepHoi cucmemu
CUMBO/bHUX 06YUC/AEHb € HAJIHUM ma e@peKkmu8HUM Y 3HAXOOMCEHHI pIZHUX MOYHUX
D038°513Ki8 HeAIHIUHUX e80/HYIlIHUX PIBHSHb 31 3AMIHHUMU KoediyieHmamu 8 MamemMamuy4Hit

dizuyi.

Kawuoei caoea: Heniwilini pieHsHHs Ilpedinzepa 3i 3MiHHUM KoeghiyieHmoMm, memod
po3wupeHux dONOMINCHUX PIBHSIHb, ONMUYHUL COAIIMOH, P038°513KU eAinMUuYHUX PYHKYILI.
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