Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 5
ISSN 1609-1833 (Print)
PURE-QUARTIC STATIONARY OPTICAL BULLETS FOR (3+1)-DIMENSIONAL NONLINEAR SCHRODINGER'S EQUATION WITH FOURTH-ORDER DISPERSIVE EFFECTS AND PARABOLIC LAW OF NONLINEARITY
Abdul-Majid Wazwaz
Department of Mathematics, Saint Xavier University, Chicago, IL 60655 USA, wazwaz@sxu.edu
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 5 , pp. S1131 - S1136 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.S1131
ABSTRACT
This work addresses a (3+1)-dimensional nonlinear Schrödinger’s equation with three fourth-order dispersive terms that usually give pure-quartic bullets. It is known that pure-quartic bullets, balanced by fourth-order dispersion and nonlinearity, differ from traditional solitons. We derive various solutions in the form of bright and dark optically modulated bullets. The solutions obtained are useful for exploring the transmission of bullets through optical nanofibers.
Keywords:
optical solitons, higher-order nonlinear Schrodinger's equation, fourth-order dispersion, optical fibers
UDC:
535.32
- Blanco-Redondo, A., De Sterke, C. M., Sipe, J. E., Krauss, T. F., Eggleton, B. J., & Husko, C. (2016). Pure-quartic solitons. Nature Сommunications, 7(1), 10427. doi:10.1038/ncomms10427
- Triki, H., Pan, A., & Zhou, Q. (2023). Pure-quartic solitons in presence of weak nonlocality. Physics Letters A, 459, 128608. doi:10.1016/j.physleta.2022.128608
- Soltani, M., Triki, H., Azzouzi, F., Sun, Y., Biswas, A., Yıldırım, Y., Alshehri, H. M. & Zhou, Q. (2023). Pure-quartic optical solitons and modulational instability analysis with cubic-quintic nonlinearity. Chaos, Solitons & Fractals, 169, 113212. doi:10.1016/j.chaos.2023.113212
- Zhu, Z., Yang, S., He, C., & Lin, X. (2023). Vector pure-quartic soliton molecule fiber laser. Chaos, Solitons & Fractals, 175, 113978. doi:10.1016/j.chaos.2023.113978
- Wazwaz, A. M., & Xu, G. Q. (2023). Variety of optical solitons for perturbed Fokas-Lenells equation through modified exponential rational function method and other distinct schemes. Optik, 287, 171011. doi:10.1016/j.ijleo.2023.171011
- Osman, M. S., & Ghanbari, B. (2018). New optical solitary wave solutions of Fokas-Lenells equation in presence of perturbation terms by a novel approach. Optik, 175, 328-333. doi:10.1016/j.ijleo.2018.08.007
- Triki, H., & Wazwaz, A. M. (2017). New types of chirped soliton solutions for the Fokas-Lenells equation. International Journal of Numerical Methods for Heat & Fluid Flow, 27(7), 1596-1601. doi:10.1108/HFF-06-2016-0252
- Ding, Y., Osman, M. S., & Wazwaz, A. M. (2019). Abundant complex wave solutions for the nonautonomous Fokas-Lenells equation in presence of perturbation terms. Optik, 181, 503-513. doi:10.1016/j.ijleo.2018.12.064
- Hosseini, K., Hincal, E., Mirekhtiary, F., Sadri, K., Obi, O. A., Denker, A., & Mirzazadeh, M. (2023). A fourth-order nonlinear Schrödinger equation involving power law and weak nonlocality: its solitary waves and modulational instability analysis. Optik, 284, 170927. doi:10.1016/j.ijleo.2023.170927
- Wazwaz, A. M., & Xu, G. Q. (2020). Bright, dark and Gaussons optical solutions for fourth-order Schrödinger equations with cubic-quintic and logarithmic nonlinearities. Optik, 202, 163564. doi:10.1016/j.ijleo.2019.163564
- Xu, G. Q. (2011). New types of exact solutions for the fourth-order dispersive cubic-quintic nonlinear Schrödinger equation. Applied Mathematics and Computation, 217(12), 5967-5971. doi:10.1016/j.amc.2010.12.008
- Xu, G. Q. (2019). Painlevé analysis, lump-kink solutions and localized excitation solutions for the (3+ 1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Applied Mathematics Letters, 97, 81-87. doi:10.1016/j.aml.2019.05.025
- Xu, G. Q., Liu, Y. P., & Cui, W. Y. (2022). Painlevé analysis, integrability property and multiwave interaction solutions for a new (4+ 1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation. Applied Mathematics Letters, 132, 108184. doi:10.1016/j.aml.2022.108184
- Guo, C., & Guo, B. (2019). The existence of global solutions for the fourth-order nonlinear Schrödinger equations. J. Appl. Anal. Comput., 9(3), 1183-1192. doi:10.11948/2156-907X.20190095
- Wazwaz, A. M., Alhejaili, W., & El-Tantawy, S. A. (2022). Bright and dark envelope optical solitons for a (2+ 1)-dimensional cubic nonlinear Schrödinger equation. Optik, 265, 169525. doi:10.1016/j.ijleo.2022.169525
- Wazwaz, A. M., Alhejaili, W., AL-Ghamdi, A. O., & El-Tantawy, S. A. (2023). Bright and dark modulated optical solitons for a (2+ 1)-dimensional optical Schrödinger system with third-order dispersion and nonlinearity. Optik, 274, 170582. doi:10.1016/j.ijleo.2023.170582
- El-Tantawy, S. A., Alharbey, R. A., & Salas, A. H. (2022). Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma. Chaos, Solitons & Fractals, 155, 111776. doi:10.1016/j.chaos.2021.111776
- Biswas, A., & Khalique, C. M. (2011). Stationary solution of the nonlinear Schrödinger's equation with log law nonlinearity by Lie symmetry analysis. Waves in Random and Complex Media, 21(4), 554-558. doi:10.1080/17455030.2011.601353
- Khalique, C. M. (2012). Exact solutions and conservation laws of a coupled integrable dispersionless system. Filomat, 26(5), 957-964. doi:10.2298/FIL1205957K
- Özkan, Y. S., Yaşar, E., & Khalique, C. M. (2023). Multi-wave, breather and interaction solutions to (3+ 1) dimensional sine-Gordon equation arising in nonlinear physical sciences. Journal of Computational Science, 73, 102144. doi:10.1016/j.jocs.2023.102144
- Adeyemo, O. D., & Khalique, C. M. (2023). Shock waves, periodic, topological kink and singular soliton solutions of a new generalized two dimensional nonlinear wave equation of engineering physics with applications in signal processing, electromagnetism and complex media. Alexandria Engineering Journal, 73, 751-769. doi:10.1016/j.aej.2023.04.049
- Triki, H., Biswas, A., Zhou, Q., Moshokoa, S. P., & Belic, M. (2019). Chirped envelope optical solitons for Kaup-Newell equation. Optik, 177, 1-7. doi:10.1016/j.ijleo.2018.09.137
- Wazwaz, A. M., Alhejaili, W., & El-Tantawy, S. A. (2022). Bright and dark envelope optical solitons for a (2+ 1)-dimensional cubic nonlinear Schrödinger equation. Optik, 265, 169525. doi:10.1016/j.ijleo.2022.169525
- Hosseini, K., Hincal, E., Mirzazadeh, M., Salahshour, S., Obi, O. A., & Rabiei, F. (2023). A nonlinear Schrödinger equation including the parabolic law and its dark solitons. Optik, 273, 170363. doi:10.1016/j.ijleo.2022.170363
- Wazwaz, A. M. (2009). Multiple soliton solutions and multiple singular soliton solutions for (2+1)-dimensional shallow water wave equations. Physics Letters A, 373(33), 2927-2930. doi:10.1016/j.physleta.2009.06.026
- Wazwaz, A. M. (2010). Partial differential equations and solitary waves theory. Springer Science & Business Media. doi:10.1007/978-3-642-00251-9
- AWazwaz, A. M., Albalawi, W., & El-Tantawy, S. A. (2022). Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik, 255, 168673. doi:10.1016/j.ijleo.2022.168673
- Elsherbeny, A. M., Mirzazadeh, M., Arnous, A. H., Biswas, A., Yıldırım, Y., & Asiri, A. (2023). Optical bullets and domain walls with cross-spatio dispersion having parabolic law of nonlinear refractive index. Journal of Optics, 1-12. doi:10.1007/s12596-023-01398-1
- Elsherbeny, A. M., Mirzazadeh, M., Arnous, A. H., Biswas, A., Yildirim, Y., Dakova, A., & Asiri, A. (2023). Optical bullets and domain walls with cross spatio-dispersion and having Kudryashov's form of self-phase modulation. Contemporary Mathematics, 505-517. doi:10.37256/cm.4320233359
- Biswas, A. (2002). Theory of optical Bullets, Progress in Electromagnetic Research, 36, 21-59. doi:10.2528/PIER01110502
- Al-Ghafri, K. S., Krishnan, E. V., Khan, S., & Biswas, A. (2022). Optical bullets and their modulational instability analysis. Applied Sciences, 12(18), 9221. doi:10.3390/app12189221
-
У цій роботі розглядається (3+1)-вимірне нелінійне рівняння Шредінгера з трьома дисперсійними членами четвертого порядку, яке зазвичай дає чисті квартичні кулі. Відомо, що чисті квартичні кулі, збалансовані дисперсією четвертого порядку і нелінійністю, відрізняються від традиційних солітонів. Ми отримали різні рішення у вигляді яскравих і темних оптично модульованих куль. Отримані рішення є корисними для дослідження поширення куль через оптичні нановолокна.
оптичні солітони, нелінійне рівняння Шредінгера вищого порядку, дисперсія четвертого порядку, оптичні волокна
Ключові слова: оптичні солітони, нелінійне рівняння Шредінгера вищого порядку, дисперсія четвертого порядку, оптичні волокна
© Ukrainian Journal of Physical Optics ©