Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 4
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
OPTICAL SOLITON PERTURBATION WITH DISPERSIVE CONCATENATION MODEL: SEMI-INVERSE VARIATION
Ajanta Roy, Milisha Hart-Simmons, Russell W. Kohl, Anjan Biswas, Yakup Yildirim and Ali Saleh Alshomrani
Author Information
Ajanta Roy,
1Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA Milisha Hart-Simmons,
1Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA Russell W. Kohl
2Department of Mathematics, University of Maryland Eastern Shore, Princess Anne, MD–21853, USA Anjan Biswas ,
1Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia 4Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa–0204, Pretoria, South Africa 5Department of Applied Sciences, Cross–Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati–800201, Romania Yakup Yildirim , 6Department of Computer Engineering, Biruni University, Istanbul–34010, Turkey
7Mathematics Research Center, Near East University, 99138 Nicosia, Cyprus
Ali Saleh Alshomrani ,
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia
1Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA Milisha Hart-Simmons,
1Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA Russell W. Kohl
2Department of Mathematics, University of Maryland Eastern Shore, Princess Anne, MD–21853, USA Anjan Biswas ,
1Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia 4Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa–0204, Pretoria, South Africa 5Department of Applied Sciences, Cross–Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati–800201, Romania Yakup Yildirim , 6Department of Computer Engineering, Biruni University, Istanbul–34010, Turkey
7Mathematics Research Center, Near East University, 99138 Nicosia, Cyprus
Ali Saleh Alshomrani ,
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 4 , pp. 04082 - 04089 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.04082
ABSTRACT
The current paper recovers a bright 1-soliton solution to the perturbed dispersive concatenation model, with Kerr's law of self-phase modulation, with the aid of the semi-inverse variational principle. The perturbation terms are of Hamiltonian type and appear with arbitrary intensity. The parameter constraints that naturally emerge from the analysis are presented
Keywords:
solitons, dispersive concatenation, stationary integral
UDC:
535.32
- Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361.
doi:10.1016/j.physleta.2013.11.031 - Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907.
doi:10.1103/PhysRevE.89.012907 - Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2014). Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Physical Review E, 90(3), 032922.
doi:10.1103/PhysRevE.90.032922 - Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2015). Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Physical Review E, 91(3), 032928.
doi:10.1103/PhysRevE.91.032928 - Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2015). Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Physical Review E, 91(2), 022919.
doi:10.1103/PhysRevE.91.022919 - Hart-Simmons, M., Biswas, A., Yıldırım, Y., Moshokoa, S., Dakova, A., & Asiri, A. (2024, March). Optical Soliton Perturbation with the Concatenation Model: Semi-inverse Variation. In Proceedings of the Bulgarian Academy of Sciences (Vol. 77, No. 3, pp. 330-337).
doi:10.7546/CRABS.2024.03.02 - Hart-Simmons, M., Biswas, A., Yıldırım, Y., Moshokoa, S., Dakova, A., & Asiri, A. (2024, March). Optical Soliton Perturbation with the Concatenation Model: Semi-inverse Variation. In Proceedings of the Bulgarian Academy of Sciences (Vol. 77, No. 3, pp. 330-337).
doi:10.7546/CRABS.2024.03.02 - Kohl, R., Milovic, D., Zerrad, E., & Biswas, A. (2009). Optical solitons by He's variational principle in a non-Kerr law media. Journal of Infrared, Millimeter, and Terahertz Waves, 30, 526-537.
doi:10.1007/s10762-009-9467-9 - Kohl, R. W., Biswas, A., Zhou, Q., Ekici, M., Alzahrani, A. K., & Belic, M. R. (2020). Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle. Chaos, Solitons & Fractals, 135, 109765.
doi:10.1016/j.chaos.2020.109765
-
У поточній статті отримане яскраве 1-солітонне рішення в моделі збуреної дисперсійної конкатенації із законом Керра самофазової модуляції за допомогою напівінверсного варіаційного принципу. Члени збурення мають гамільтонівський тип і з'являються з довільною інтенсивністю. Представлено обмеження параметрів, які природно випливають з аналізу.
Ключові слова: солітони, дисперсійна конкатенація, стаціонарний інтеграл
Ключові слова: солітони, дисперсійна конкатенація, стаціонарний інтеграл
© Ukrainian Journal of Physical Optics ©