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1. Introduction 
The concatenation model was first proposed exactly a decade ago, in 2014, when three well–
known equations from nonlinear fiber optics were conjoined. They are the nonlinear 
Schrödinger’s equation (NLSE), Lakshmanan–Porsezian-Daniel (LPD), and Sasa–Satsuma 
equation. This model gained a lot of popularity with its several features. The Painleve 
analysis was addressed, the soliton solutions were identified, its conservation laws were 
located, and the gap solitons for the model were presented. Subsequently, the model was 
addressed with polarization–mode dispersion, and several of its features were also reported 
in various works. The following year, a similar model was proposed, referred to as the 
dispersive concatenation model. This is the combination of the Schrödinger–Hirota equation 
(SHE), LPD, and fifth–order NLSE. The dispersive effects for this model stem from the SHE 
and the fifth–order NLSE components. This second form of concatenation model was also 
extensively studied, and several of its features became known [1–5]. 
It is now time to turn the page. The dispersive concatenation model will be addressed in this 
paper in the presence of perturbation terms. These are all of Hamiltonian type and appear 
with arbitrary intensity. This perturbed version of the dispersive concatenation model 
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comes with linear chromatic dispersion (CD) and Kerr law of self–phase modulation, which 
will be addressed in the paper. The perturbation terms are all of Hamiltonian type and come 
with arbitrary intensity. A bright 1–soliton solutions will be recovered for the model by the 
aid of semi–inverse variational principle (SVP). The soliton solution that will be identified is 
not exact but is analytical. The parameter constraints for the existence of the solitons 
naturally emerge from the mathematical analysis and will be enumerated. The rest of the 
paper exhibits the details of the model and its soliton solution derivation. 

2. Governing model 
The dispersive concatenation model with Kerr's law of SPM is structured as [4–7]: 
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  (1) 

Here,  ,q x t  represents a complex-valued function that describes the wave amplitude. In 

this context, x  and t  represent the spatial and temporal coordinates, respectively. The 

parameters a  and b  correspond to CD and SPM, respectively. The parameter 1i    is the 
imaginary unit. The coefficients 1 , 2 , and 3  are the non–zero parameters and represent 

the coefficients of SHE, the LPD model and the fifth–order NLSE, respectively. The 
perturbation terms are from self–shortening effects and self–frequency shifts, represented 
by the   and j  for 1,2j   respectively. Finally, the parameter m  in the perturbation terms 

represents the arbitrary intensity factor.  
The 1–soliton solution to (1) for 0j   , for 1,2j   is given by:  

      ,   sech .i x tq x t A B x vt e              (2) 

In (2), A  represents the amplitude of the solitons, while B  gives its inverse width, and v  is 
the speed of the soliton. The phase component is represented by the   - the soliton 
wavenumber, while   and   give the frequency and phase constant, respectively.  
It must be noted that the derivation of the soliton solution for the perturbed concatenation 
model with Kerr law and power-law of SPM by the implementation of SPM has been reported 
[6, 7]. To seek soliton solutions to the dispersive concatenation model given by (1) for 
nonzero   and j  its structural format is taken to be: 

      ,, ,i x tq x t g x vt e        (3) 

from which the phase factor is:  
  , ,x t x t            (4) 

where g  represents the amplitude portion of the bright soliton. By substituting (3) and (4) 

into (1) and splitting into real and imaginary parts, one obtains for the real part as:  
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The imaginary part leads to the following:  
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  (6) 

 
The notations /g dg ds  , 2 2/g d g ds  , 3 3/g d g ds  ,   4 4/ivg d g ds  and 
  5 5/vg d g ds  are adopted. The constraint conditions that emerge from (6) are given as:  

 9 10 11 15 0,               (7) 

 13 12 14 ,             (8) 

 1 1 2 34 ,               (9) 

 21 2 2 4 2 7 2 8 3 132 2 4 ,                    (10) 

and  
 21 1 2 4 2 7 2 8 3 132 2 2 4 .                     (11) 

Given the imaginary component in (6) and the condition given by equations (7)–(11), the 
soliton speed is given by:  

 21 12 2 .v            (12) 

Given the outcome of the 9 , 10 , 11 , and 15  terms, equation (1) reduces to the 

following:  
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While following the same conditions, the real components of the equation reduce to the 
following:  
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The following notations are now adopted for simplicity:  
 2 3 41 1 1 2 3 ,P                 (15) 

 22 1 1 2 33 6 ,P              (16) 

 3 2 3,P         (17) 

 
2 2 24 1 2 2 4 2 6 2 7

2 3 3 32 8 3 12 3 13 3 14 ,
P b           

           
    

   
  (18) 

 5 2 5,P         (19) 

and 
  6 2 .P            (20) 

A couple of additional parameter constraints that emerge for integrability of the real part 
equation (14) are:  

 2 4 2 8 3 12 3 13 3 14 0,                    (21) 

and  
 2 6 2 7 3 12 3 13 3 142 2 2 0.                    (22) 

3. Semi-inverse variation 
Multiplying (14) by g  given the previous conditions of (21) and (22) and then integrating 

will lead to:  

       
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where K is an integration constant. The stationary integral is next defined as:  

    
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   (24) 

SVP states that the solution of the perturbed concatenation model given by (1) will be the 
same as that of its unperturbed version, namely with 0j   , as given by (2). However, 

the amplitude ( A ) and the inverse width ( B ) of the perturbed soliton will change, and their 
variations can be recovered from the solution of the coupled system [6, 7]:  

 0,J
A
 


      (25) 

and  

 0.J
B
 


      (26) 

Now, the solution of the unperturbed concatenation model is given by (2). Performing the 
integration in (24) leads to the stationary integral being evaluated as:  
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Given the stationary integral by (27), the relations (25) and (26) produce:  
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respectively. Upon uncoupling (28) and (29), one recovers the amplitude–width relation of 
the perturbed bright 1–soliton as:  
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and are subject to the several parameter constraints listed throughout. Additionally, the 
amplitude–width relation (30) prompts two constraints that are given by:  

      
    

2 41 4 5

22
3 2 2 3

45 15 8
145 Γ Γ4 25 148 0,2

11 2 1 Γ
2

m

P A P A P

mA mP P P P

m m m

   
  
        

      

  (31) 

together with  
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Finally, the perturbed bright 1-soliton solution is given by (2), where the relation between 
the amplitude A  and its inverse width B  is in (30) with the parameter constraints that are 
exhibited throughout. 
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(a)  

(b)  

(c)  
Fig. 1. Profile of a bright soliton solution. We explore and analyze the evolution of the bright 
soliton solution for the complex-valued solution described by Eq. (2). Our discussion is 
supported by surface plot (a), contour plot (b), and 2D plot (c) shown in Fig. 1, with the 
arbitrary intensity factor m . The parameters used for these simulations are as follows: 

1A  , 1m  , 1  , 1  , 6.1   , 1b  , 1 1  , 2 1  , 3 1  , 1 4  , 2 5  , 3 1   , 

4 1  , 5 1  , 6 6  , 7 1  , 8 1  , 12 2.5    and 14 1  . 
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4. Conclusions 
The paper recovered the bright 1-optical soliton solution to the perturbed dispersive 
concatenation model addressed with the Kerr law of SPM, while the Hamiltonian 
perturbation terms are with arbitrary intensity. The perturbation terms, even though of 
Hamiltonian type, cannot render the model integrable simply because of arbitrary intensity. 
Thus, SVP has rescued from this hurdle. The 1-soliton solution thus recovered is not exact, 
although it is an analytical. This salvages when an analytical solution is necessary, such as in 
the telecommunications industry, where such mathematical models are visible and studied. 
The results that are recovered in the paper are extendable for further analytical studies in 
the future. 
It must be noted that SVP fails to recover dark and singular 1-soliton solution to the model. 
The stationary integral in those cases is rendered to be divergent. Later, the dispersive 
concatenation model will be generalized to power–law of SPM and the same principle will be 
implemented to derive the bright 1–soliton solutions to its perturbed version when the 
Hamiltonian perturbation terms carry a different parameter than the homogeneous model. 
Such studies are underway, and the results will be disseminated after relating them to the 
pre-existing ones [8, 9]. 
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Анотація. У поточній статті отримане яскраве 1-солітонне рішення в моделі 
збуреної дисперсійної конкатенації із законом Керра самофазової модуляції за 
допомогою напівінверсного варіаційного принципу. Члени збурення мають 
гамільтонівський тип і з'являються з довільною інтенсивністю. Представлено 
обмеження параметрів, які природно випливають з аналізу. 

Ключові слова: солітони, дисперсійна конкатенація, стаціонарний інтеграл 


