Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 2
IMPLICIT QUIESCENT OPTICAL SOLITONS FOR COMPLEX GINZBURG-LANDAU EQUATION WITH GENERALIZED QUADRATIC-CUBIC FORM OF SELF-PHASE MODULATION AND NONLINEAR CHROMATIC DISPERSION BY LIE SYMMETRY
1`Abdullahi Rashid Adem, 2,3,4,5Anjan Biswas, 6,7Yakup Yildirim, 8Anwar Jaafar Mohamad Jawad and 3Ali Saleh Alshomrani
1Department of Mathematical Sciences, University of South Africa, UNISA-0003, South Africa 2Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA 3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia 4Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania 5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa 6Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey 7Department of Mathematics, Near East University, 99138 Nicosia, Cyprus 8Department of Computer Technical Engineering, Al-Rafidain University College, 10064 Baghdad, Iraq
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 2 , pp. 02036 - 02041 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.02042
ABSTRACT
Keywords:
quiescent solitons, Lie symmetry
UDC:
535.32
- Adem, A. R., Biswas, A., Yıldırım, Y., & Asiri, A. (2023). Implicit quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion and power-law of self-phase modulation by Lie symmetry. Journal of Optics, 1-6. doi:10.1007/s12596-023-01443-z
- Adem, A. R., Biswas, A., Yıldırım, Y., & Asiri, A. (2023). Implicit quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion and in absence of self-phase modulation by Lie symmetry. Journal of Optics,. doi:10.1007/s12596-023-01451-z
- Adem, A. R., Biswas, A., Yildirim, Y., & Asiri, A. (2023). Implicit Quiescent Optical Solitons for the Dispersive Concatenation Model with Nonlinear Chromatic Dispersion by Lie Symmetry. Contemporary Mathematics, 666-674. doi:10.37256/cm.4420233575
- Adem, A. R., Ntsime, B. P., Biswas, A., Asma, M., Ekici, M., Moshokoa, S. P., Alzahrani, A. K. & Belic, M. R. (2020). Stationary optical solitons with Sasa-Satsuma equation having nonlinear chromatic dispersion. Physics Letters A, 384(27), 126721. doi:10.1016/j.physleta.2020.126721
- Adem, A. R., Ekici, M., Biswas, A., Asma, M., Zayed, E. M., Alzahrani, A. K., & Belic, M. R. (2020). Stationary optical solitons with nonlinear chromatic dispersion having quadratic-cubic law of refractive index. Physics Letters A, 384(25), 126606. doi:10.1016/j.physleta.2020.126606
- Adem, A. R., Ntsime, B. P., Biswas, A., Khan, S., Alzahrani, A. K., & Belic, M. R. (2021). Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index. Ukrainian Journal of Physical Optics, 22(2), 83-86. doi:10.3116/16091833/22/2/83/2021
- Adem, A. R., Ntsime, B. P., Biswas, A., Dakova, A., Ekici, M., Yidirim, Y., & Alshehri, H. M. (2022). Stationary optical solitons with Kudryashov's self-phase modulation and nonlinear chromatic dispersion. Optoelectronics and Advanced Materials-Rapid Communications, 16(January-February 2022), 58-60.
- Adem, A. R., Ntsime, B. P., Biswas, A. N. J. A. N., Ekici, M., Yildirim, Y. A. K. U. P., & Alshehri, H. M. (2022). Implicit quiescent optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion. Journal of Optoelectronics and Advanced Materials, 24(September-October 2022), 450-462.
- Adem, A. R., Biswas, A., Yildirim, Y., Jawad, A. J. M., & Alshomrani, A. S. (2024). Implicit quiescent optical solitons with generalized quadratic–cubic form of self–phase modulation and nonlinear chromatic dispersion by Lie symmetry. Ukrainian Journal of Physical Optics, 25(5), 02016 – 02020, 10.3116/16091833/Ukr.J.Phys.Opt.2024.02016
- Biswas, A., & Khalique, C. M. (2011). Stationary solutions for nonlinear dispersive Schrödinger's equation. Nonlinear Dynamics, 63, 623-626. doi:10.1007/s11071-010-9824-1
- Biswas, A., & Khalique, C. M. (2013). Stationary solutions for the nonlinear dispersive Schrödinger equation with generalized evolution. Chinese Journal of Physics, 51(1), 103-110.
- Yan, Z. (2006). Envelope compactons and solitary patterns. Physics Letters A, 355(3), 212-215. doi:10.1016/j.physleta.2006.02.032
- Yan, Z. (2006). Envelope compact and solitary pattern structures for the GNLS (m, n, p, q) equations. Physics Letters A, 357(3), 196-203. doi:10.1016/j.physleta.2006.04.032
- Li, Z., & Zhu, E. (2023). Optical soliton solutions of stochastic Schrödinger-Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity. Journal of Optics, 1-7. doi:10.1007/s12596-023-01287-7
- Devika, V., Mani Rajan, M. S., Thenmozhi, H., & Sharaf, A. (2023). Flower core photonic crystal fibres for supercontinuum generation with low birefringent structure for biomedical imaging. Journal of Optics, 52(2), 539-547. doi:10.1007/s12596-022-01002-y
- Mani Rajan, M. S. (2016). Dynamics of optical soliton in a tapered erbium-doped fiber under periodic distributed amplification system. Nonlinear Dynamics, 85(1), 599-606. doi:10.1007/s11071-016-2709-1
- Manirajan, M. S & Seyezhai, R. (2016). Capacitor voltage balancing control for modular multilevel cascaded inverter based on phase shifted pulse width modulation technique. Advances in Natural and Applied Sciences, 10(3), 205-215.
- Jawad, A. J. M., & Abu-AlShaeer, M. J. (2023). Highly dispersive optical solitons with cubic law and cubic-quinticseptic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci., 1(1), 1-8.
- Nandy, S., & Lakshminarayanan, V. (2015). Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions. Journal of Optics, 44, 397-404. doi:10.1007/s12596-015-0270-9
- Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398. doi:10.1007/s12596-022-00963-4
- Tang, L. (2023). Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas-Lenells equation. Journal of Optics, 1-10. doi:10.1007/s12596-023-01097-x
- Wang, T. Y., Zhou, Q., & Liu, W. J. (2022). Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chinese Physics B, 31(2), 020501. doi:10.1088/1674-1056/ac2d22
- Zhong, Y., Triki, H., & Zhou, Q. (2023). Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential. Communications in Theoretical Physics, 75(2), 025003. doi:10.1088/1572-9494/aca51c
- Zhou, Q. (2022). Influence of parameters of optical fibers on optical soliton interactions. Chinese Physics Letters, 39(1), 010501. doi:10.1088/0256-307X/39/1/010501
-
Ця робота присвячена отриманню стаціонарних оптичних солітонів для комплексного рівняння Гінзбурга–Ландау з нелінійною хроматичною дисперсією та узагальненою структурою квадратично-кубічної форми самомодуляції фази. Для досягнення цього використовується симетрія Лі. Модель досліджується з лінійною часовою еволюцією, а також з узагальненою часовою еволюцією.
Ключові слова: спокійні солітони, симетрія Лі
© Ukrainian Journal of Physical Optics ©