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Abstract. This work is on the retrieval of quiescent optical solitons for the complex Ginzburg–Landau equation 
that is with nonlinear chromatic dispersion and generalized structure of quadratic–cubic form of self–phase 
modulation. The Lie symmetry is applied to make this retrieval possible. The model is studied with linear 
temporal evolutions as well as generalized temporal evolution.  
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1. Introduction 
The study of quiescent optical solitons with nonlinear chromatic dispersion (CD) for a 
variety of models has gained undivided attention for the past couple of decades. There are 
several approaches that have been implemented for the retrieval of such solitons apart from 
Lie symmetry and these are visible across a wide variety of reported results. Various models 
from optoelectronics have been studied in this context. These are the nonlinear 
Schrödinger’s equation (NLSE), complex Ginzburg–Landau equation (CGLE), Lakshmanan–
Porsezian–Daniel equation, NLSE with Kudryashov’s form of self–phase modulation (SPM), 
concatenation model, the dispersive concatenation model, and many others. The results are 
visible all across the journals [1–13]. 

The current paper is a re-visitation of the quiescent optical solitons for the CGLE that 
has been addressed with several forms of non–Kerr laws of SPM. Incidentally, this work 
studies the form of a generalized quadratic–cubic structure that was inadvertently omitted in 
the past [8]. The current paper, therefore, bridges the gap. This work deals with the retrieval 
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of quiescent optical solitons for the CGLE with nonlinear CD and having the generalized form 
of quadratic–cubic structure of SPM. The Lie symmetry approach will enlighten this 
derivation process. The model will be studied with linear temporal evolution as well as with 
generalized temporal evolution. In both cases, implicit forms of the quiescent optical solitons 
will emerge, and they are listed along with the relevant parameter constraints that are also 
enumerated. The details of the derivation follow through. 

2. Linear temporal evolution 
The dimensionless form of the complex Ginzburg–Landau equation (CGLE) with linear 
temporal evolution and nonlinear CD and having the generalized form of quadratic–cubic 
law of SPM is given as:  
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In Eq. (1), the dependent variable  ,q x t  is a complex–valued function and represents the 
wave envelope. The independent variables x  and t  are the spatial and temporal 
coordinates, respectively. The first term is the linear temporal evolution and its coefficient 

1i   . The coefficient of a  is the nonlinear CD with n  being the parameter of nonlinearity. 
Then, the coefficients of jb  for 1, 2j  , represent the generalized quadratic–cubic form of 
SPM with m  representing the generalized parameter. If 1m  , the special case collapses to 
CGLE with quadratic–cubic nonlinearity, and this was studied during 2022 [8]. The terms 
with  ,   and   emerge from nonlinear optoelectronic effects. The coefficients a , jb ,  , 
  and   are all real–valued constants.  
In order to address Eq. (1), the following pulse structure is chosen in the phase–amplitude 
format:  

     , e ,i tq x t x       (2) 

where  x  represents the pulse amplitude and   its frequency. Upon substituting the 

wave structure given by Eq. (2) into Eq. (1) gives the ordinary differential equation (ODE) for 
pulse amplitude as:  
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For integrability of Eq. (3), set  
1n   .      (4) 

The governing Eq. (1) therefore modifies to:  
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and the corresponding ODE given by (3) reduces to:  
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              2 2 2 2 21 2 0.m mx x x x b x b x                 (6) 

Eq. (6) admits a single Lie point symmetry, namely / x  . With the implementation of this 

translational Lie symmetry, Eq. (6) leads to the following form of implicit quiescent optical 
solitons:  
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Finally, Eq. (7) poses parameter constraints that must be satisfied, for these implicit 
quiescent optical solitons to exist, and these are:  

   0,          (12) 
and  

1 2 0.A A       (13) 

3. Generalalized temporal evolution 
The CGLE given by Eq. (1) is now written with generalized temporal evolution as:  
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Here, in Eq. (14), the constant l  is the parameter for the generalized temporal evolution. 
When 1l  , Eq. (14) reduces to the case of linear temporal evolution studied in Eq. (1) . The 
same substitution given by Eq. (2) is applied to Eq. (14), and thus, the corresponding ODE for 
 x  reads:  
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For the integrability of ODE (15), one must choose  
l n       (16) 

and this reduces the governing model Eq. (14) to  
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while the corresponding ODE, given by Eq. (15), condenses to:  
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The above equation admits a single Lie point symmetry, namely / x  . This symmetry will 

be used in the integration process and it leads to the following implicit solution in terms of 
the Appell hypergeometric function of two variables  
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where 
    1 2 2 2 ,mA b n m n        2 2 2 22 1 1 1 1 12 ,A b b m b mn b n b n        
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The implicit solution given by Eq. (19) poses a parameter constraint given by  
   0.n n           (20) 

Finally, the Appell hypergeometric function of two variables is defined as:  
 1 1 2; , ; ; ,F a b b c x y      (21) 

is formulated through the hypergeometric series:  
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which is convergent inside the region  
 max , 1x y        (23) 

and the Pochhammer symbol is:  
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The convergence criteria given by Eq. (23), for Eq. (20), transforms to:  
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4. Conclusions 
The paper retrieved quiescent optical solitons for the CGLE with nonlinear CD and the 
generalized form of the quadratic–cubic law of SPM. The Lie symmetry has made this 
retrieval possible for linear temporal evolution as well as generalized temporal evolution. 
The parameter constraints that naturally emerged from the solution structures are also 
enlisted. These solutions lead to the conclusion that the CD must never be rendered to be 
nonlinear, deliberately or inadvertently. This would only cause the solitons to be stationary, 
and the information transfer across intercontinental distances would consequently be 
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stalled. Thus, catastrophic consequences would ensue. These results would be further 
extended with additional forms of SPM for the CGLE and would be later disclosed after 
aligning them with the pre–existing works [14–24]. 
Disclosure. The authors claim no conflict of interest. 
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Анотація. Ця робота присвячена отриманню стаціонарних оптичних солітонів для 
комплексного рівняння Гінзбурга–Ландау з нелінійною хроматичною дисперсією та 
узагальненою структурою квадратично-кубічної форми самомодуляції фази. Для 
досягнення цього використовується симетрія Лі. Модель досліджується з лінійною 
часовою еволюцією, а також з узагальненою часовою еволюцією. 

Ключові слова: спокійні солітони, симетрія Лі 


