Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 2
IMPLICIT QUIESCENT OPTICAL SOLITONS WITH GENERALIZED QUADRATIC-CUBIC FORM OF SELF-PHASE MODULATION AND NONLINEAR CHROMATIC DISPERSION BY LIE SYMMETRY
1Abdullahi Rashid Adem, 2,3,4,5Anjan Biswas, 6,7Yakup Yildirim, 8Anwar Jaafar Mohamad Jawad and 3Ali Saleh Alshomrani
1Department of Mathematical Sciences, University of South Africa, UNISA-0003, South Africa 2Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA 3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia 4Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania 5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa 6Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey 7Department of Mathematics, Near East University, 99138 Nicosia, Cyprus 8Department of Computer Technical Engineering, Al-Rafidain University College, 10064 Baghdad, Iraq
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 2 , pp. 02016 - 02020 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.02016
ABSTRACT
Keywords:
quiescent optical solitons, Lie symmetry
UDC:
535.32
- Adem, A. R., Ekici, M., Biswas, A., Asma, M., Zayed, E. M., Alzahrani, A. K., & Belic, M. R. (2020). Stationary optical solitons with nonlinear chromatic dispersion having quadratic-cubic law of refractive index. Physics Letters A, 384(25), 126606. doi:10.1016/j.physleta.2020.126606
- Adem, A. R., Biswas, A., Yıldırım, Y., & Asiri, A. (2023). Implicit quiescent optical solitons for the concatenation model with Kerr law nonlinearity and nonlinear chromatic dispersion by Lie symmetry. Journal of Optics, 1-6. doi:10.1007/s12596-023-01450-0
- Adem, A. R., Biswas, A., Yıldırım, Y., & Asiri, A. Implicit quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion and in absence of self-phase modulation by Lie symmetry. To appear in Journal of Optics.
- Adem, A. R., Biswas, A., Yıldırım, Y., & Asiri, A. (2023). Implicit quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion and power-law of self-phase modulation by Lie symmetry. Journal of Optics, 1-6. doi:10.1007/s12596-023-01443-z
- Adem, A. R., Biswas, A., Yildirim, Y., & Asiri, A. (2023). Implicit Quiescent Optical Solitons for the Dispersive Concatenation Model with Nonlinear Chromatic Dispersion by Lie Symmetry. Contemporary Mathematics, 666-674. doi:10.37256/cm.4420233575
- Adem, A. R., Ntsime, B. P., Biswas, A., Asma, M., Ekici, M., Moshokoa, S. P., ... & Belic, M. R. (2020). Stationary optical solitons with Sasa-Satsuma equation having nonlinear chromatic dispersion. Physics Letters A, 384(27), 126721. doi:10.1016/j.physleta.2020.126721
- Adem, A. R., Ntsime, B. P., Biswas, A., Khan, S., Alzahrani, A. K., & Belic, M. R. (2021). Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index. Ukrainian Journal of Physical Optics, 22(2), 83-86. doi:10.3116/16091833/22/2/83/2021
- Adem, A. R., Ntsime, B. P., Biswas, A., Dakova, A., Ekici, M., Yildirim, Y. & Alshehri, H. M. (2022). Stationary optical solitons with Kudryshov's self-phase modulation and nonlinear chromatic dispersion. Optoelectronics and Advanced Materials-Rapid Communications, 16(1-2), 58-60.
- Adem, A. R., Ntsime, B. P., Biswas, A. N. J. A. N., Ekici, M., Yildirim, Y. A. K. U. P., & Alshehri, H. M. (2022). Implicit quiescent optical solitons with complex Ginzburg-Landau equation having nonlinear chromatic dispersion. Journal of Optoelectronics and Advanced Materials, 24(September-October 2022), 450-462.
- Biswas, A., & Khalique, C. M. (2011). Stationary solutions for nonlinear dispersive Schrödinger's equation. Nonlinear Dynamics, 63, 623-626. doi:10.1007/s11071-010-9824-1
- Biswas, A., & Khalique, C. M. (2013). Stationary solutions for the nonlinear dispersive Schrödinger equation with generalized evolution. Chinese Journal of Physics, 51(1), 103-110.
- Yan, Z. (2006). Envelope compactons and solitary patterns. Physics letters A, 355(3), 212-215. doi:10.1016/j.physleta.2006.02.032
- Yan, Z. (2006). Envelope compact and solitary pattern structures for the GNLS (m, n, p, q) equations. Physics Letters A, 357(3), 196-203. doi:10.1016/j.physleta.2006.04.032
- Li, Z., & Zhu, E. (2023). Optical soliton solutions of stochastic Schrödinger-Hirota equation in birefringent fibers with spatiotemporal dispersion and parabolic law nonlinearity. Journal of Optics, 1-7. doi:10.1007/s12596-023-01287-7
- Devika, V., Mani Rajan, M. S., Thenmozhi, H., & Sharaf, A. (2023). Flower core photonic crystal fibres for supercontinuum generation with low birefringent structure for biomedical imaging. Journal of Optics, 52(2), 539-547. doi:10.1007/s12596-022-01002-y
- Mani Rajan, M. S. (2016). Dynamics of optical soliton in a tapered erbium-doped fiber under periodic distributed amplification system. Nonlinear Dynamics, 85(1), 599-606. doi:10.1007/s11071-016-2709-1
- Manirajan, M. S & Seyezhai, R. (2016). Capacitor voltage balancing control for modular multilevel cascaded inverter based on phase shifted pulse width modulation technique. Advances in Natural and Applied Sciences, 10(3), 205-215.
- Rajan, M. M. (2020). Transition from bird to butterfly shaped nonautonomous soliton and soliton switching in erbium doped resonant fiber. Physica Scripta, 95(10), 105203. doi:10.1088/1402-4896/abb2df
- Nandy, S., & Lakshminarayanan, V. (2015). Adomian decomposition of scalar and coupled nonlinear Schrödinger equations and dark and bright solitary wave solutions. Journal of Optics, 44, 397-404. doi:10.1007/s12596-015-0270-9
- Tang, L. (2023). Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. Journal of Optics, 52(3), 1388-1398. doi:10.1007/s12596-022-00963-4
- Tang, L. (2023). Phase portraits and multiple optical solitons perturbation in optical fibers with the nonlinear Fokas–Lenells equation. Journal of Optics, 52(4), 2214–2223. doi:10.1007/s12596-023-01097-x
- Wang, T. Y., Zhou, Q., & Liu, W. J. (2022). Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers. Chinese Physics B, 31(2), 020501. doi:10.1088/1674-1056/ac2d22
- Zhong, Y., Triki, H., & Zhou, Q. (2023). Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity-time symmetry potential. Communications in Theoretical Physics, 75(2), 025003. doi:10.1088/1572-9494/aca51c
- Zhou, Q. (2022). Influence of parameters of optical fibers on optical soliton interactions. Chinese Physics Letters, 39(1), 010501. doi:10.1088/0256-307X/39/1/010501
- Zhou, Q., Sun, Y., Triki, H., Zhong, Y., Zeng, Z., & Mirzazadeh, M. (2022). Study on propagation properties of one-soliton in a multimode fiber with higher-order effects. Results in Physics, 41, 105898. doi:10.1016/j.rinp.2022.105898
-
У поточній роботі отримано неявну форму стаціонарних оптичних солітонів, які виникають з розв’язку нелінійного рівняння Шредінгера з узагальненою формою квадратично-кубічної нелінійної зміни показника заломлення. Дослідження проводиться як з лінійним часовим еволюційним процесом, так і з узагальненим часовим еволюційним процесом. Результати виражені через гіпергеометричні функції Аппеля, так само як у випадку квадратично-кубічної форми нелінійного показника заломлення, який був описаний раніше. Розв’язки отримані завдяки використанню симетрії Лі.
Ключові слова: стаціонарні оптичні солітони, симетрія Лі
© Ukrainian Journal of Physical Optics ©