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Abstract. The current paper extracts the implicit form of quiescent optical solitons that emerge from the 
nonlinear Schrödinger’s equation with the generalized form of quadratic–cubic nonlinear refractive index 
change. The work is with linear temporal evolution as well as with generalized temporal evolution. The results 
are in terms of Appell hypergeometric functions as in the case of the quadratic–cubic form of nonlinear 
refractive index, reported earlier. Lie symmetry analysis has made this retrieval possible.  
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1. Introduction 
The sustainment of optical soliton propagation through transcontinental and transoceanic 
distances is based on the maintenance of a delicate balance between chromatic dispersion 
(CD) and self–phase modulation (SPM). If the balance, however, gets compromised during 
the course of propagation of pulses through an optical fiber, the solitons get stalled, and thus, 
a catastrophic situation occurs. Therefore, it is imperative to maintain this balance 
throughout the pulse propagation. One of the sources to lose this balance is when the CD is 
rendered to be nonlinear during the pulse propagation. This can happen due to many 
sources, such as rough handling of fibers, random injection of pulses at the initial end of the 
fiber, random variation of the fiber diameter, and other such unwanted sources. The current 
paper will obtain the structure of a quiescent optical soliton that is yielded when the CD is 
nonlinear for the generalized quadratic–cubic form of SPM. This paper is a sequel to a 
previously studied work [1] where the governing nonlinear Schrödinger’s equation (NLSE) 
was addressed with quadratic–cubic form of SPM. 
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The formation of such quiescent solitons and stalling the soliton propagation in its 
tracks were studied for a wide variety of models using Lie symmetry analysis. These are the 
concatenation model and the dispersive concatenation model, Sasa–Satsuma equation, NLSE 
with Kudryashov’s form of SPM, complex Ginzburg–Landau equation, Lakshmanan–
Porsezian–Daniel model, NLSE with a few of the non–Kerr laws of nonlinear refractive index 
including the logarithmic law [1–11]. The prequel of this work, which is with a quadratic–
cubic form of nonlinear refractive index, was addressed in 2020 [1]. The results of this work 
are a generalized version of the previously reported one during 2020, where the quadratic–
cubic nonlinearity was addressed. The concept of quiescent optical solitons and solitary 
waves was first studied in 2006, and subsequently, a deluge of results has started pouring in 
[12, 13]. The current paper applies Lie symmetry analysis and recovers the implicit 
quiescent optical solitons for the NLSE with nonlinear CD and the generalized version of the 
quadratic–cubic form of SPM. The temporal evolutions are taken to be linear and its 
generalized version as well. The details are exhibited in the rest of the paper. 

2. Linear temporal evolution 
The dimensionless form of the governing NLSE with nonlinear CD and generalized 
quadratic–cubic form of SPM is given as:  

   2
1 2 0.n m m

t xx
iq a q q b q b q q       (1) 

Here, in Eq. (1)  ,q x t  is the wave amplitude while the independent variables are x  

and t  which account for the spatial and temporal variables respectively. The coefficients a  

and ib  (j=1, 2) are the coefficients of nonlinear CD and SPM, respectively, 1i    and tiq  

represents the linear temporal evolution. The parameter n  is the nonlinearity parameter for 
CD while m  represents the nonlinearity parameter for SPM. If 1m  , one recovers the usual 
quadratic–cubic form of SPM which has been studied during 2020 [1]. The cubic dependence 
of the self-modulated refractive index does not exist due to centrosymmetric crystals or 
waveguides. Thus, the present work is considered for non-centrosymmetric crystals or 
waveguides as well. 

However, if 0n  , one recovers the usual linear CD. In order to proceed with the 
solution structure of Eq. (1), one selects the substitution  

   e ., i tq x t x      (2) 

Here,  x  represents the amplitude function, which depends on the variable x alone and   

is the soliton frequency. Substituting Eq. (2) into Eq. (1) gives:  
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Eq. (3) admits a single Lie point symmetry, namely / x  . Implementing this symmetry in 

the integration process of Eq. (3) yields the following implicit solution in terms of the Appell 
hypergeometric function of two variables:  

    2
1 1 2

2 1 2 1 1; , ;1 ; , ,
2 2 2 2

n
n n a n nx F A A

n m m

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 

     (4) 

where  
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The Appell hypergeometric function of two variables denoted by  1 1 2; , ; ; ,F a b b c x y  is defined 

by the infinite series 
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 max , 1.x y  Thus, for Eq. (4), this amounts to saying that the convergence criteria 
translates to:  

 1 2max , 1.A A       (7) 

3. Generalized temporal evolution 
Eq. (1) with generalized temporal evolution reads:  

     2
1 2 0,n m ml l l

t xx
i q a q q b q b q q       (8) 

where l  represents the generalized temporal evolution parameter. For the special case 
when 1l  , Eq. (8) collapses to Eq. (1).  
Implementing the same substitution of Eq. (2) into Eq. (8) gives:  

               
     

22 1

2 2 2 21 2

2 1 1

0.

n n

m m

a l l n n n x x a l n x x

l x b x b x

   

   



 

     

   


 (9) 

Eq. (9) admits a single Lie point symmetry given by / x  . When this is implemented into 

Eq. (9) one recovers the implicit solution in terms of the Appell hypergeometric function as:  
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The convergence criteria for this series are again given by Eq. (7) where jA  ( 1,2j  ), for this 

case, are:  
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By applying the substitution of Eq. (2) to Eq. (8), we derive the corresponding ordinary 
differential equation (ODE) (9). What's noteworthy is that this particular ODE possesses a 
unique Lie point symmetry. Upon incorporating this symmetry into (9), we recover the 
implicit solution expressed in the form of the Appell hypergeometric function, denoted as 
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Eq. (10). Delving deeper into the mathematical intricacies, it's crucial to highlight that the 
convergence criteria for this series are once again dictated by Eq. (7). However, in this 
specific case, the expressions for the convergence criteria are explicitly outlined in Eqs. (11) 
and (12). These Eqs. (11) and (12) provide a detailed insight into the conditions under which 
the series associated with the Appell hypergeometric function converges. In essence, this 
analytical progression elucidates the systematic approach from substitution to the 
emergence of a singular Lie point symmetry, ultimately leading to the implicit solution 
represented by the Appell hypergeometric function. The subsequent discussion of 
convergence criteria further refines our understanding of the mathematical framework 
underpinning these analytical developments. 

4. Conclusions 
The current work is about the retrieval of implicit quiescent optical solitons to the NLSE with 
nonlinear CD and generalized quadratic–cubic form of nonlinear refractive index. Both linear 
temporal evolution and generalized temporal evolution are considered. The integration 
methodology that is implemented is the Lie symmetry analysis. The results of this work are 
thus a generalized version of the previously reported ones during 2020, where the 
quadratic–cubic nonlinearity was addressed. Thus, upon setting m=1, the results collapse to 
the ones that were achieved in the past. 

The results of the current work and its prequel paper thus form a strong foundation to 
extend the results further along and recover additional answers when the SPM is further 
extended and/or generalized. Subsequently, additional forms of optoelectronic devices will 
be considered where such laws of nonlinearity are applicable, and these would include fibers 
with differential group delay and dispersion–flattened fibers. Additionally, the application of 
this study would be in magneto–optic waveguides, Bragg gratings, optical couplers, and 
other such devices would be handled. The results will be gradually and sequentially reported 
in a wide range of journals after aligning them with the pre–existing concepts [14–25]. The 
current paper addresses the generalized quadratic–cubic nonlinearity provided by 
parameter m. Moreover, there are no restrictions imposed on the variable m. Therefore, it is 
not constrained by any specific limitations or conditions. The results presented in this work 
offer a more generalized perspective compared to the study reported in [1]. The previous 
work [1] specifically addressed the quadratic–cubic nonlinearity by setting m=1. However, in 
our present study, the variable m is not fixed and can vary without constraints. This lack of 
restriction on m in the current work provides a broader exploration of the parameter space, 
offering insights into the system behavior beyond the specific case considered in [1]. 
Disclosure. The authors claim no conflict of interest. 
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Анотація. У поточній роботі отримано неявну форму стаціонарних оптичних 
солітонів, які виникають з розв’язку нелінійного рівняння Шредінгера з узагальненою 
формою квадратично-кубічної нелінійної зміни показника заломлення. Дослідження 
проводиться як з лінійним часовим еволюційним процесом, так і з узагальненим 
часовим еволюційним процесом. Результати виражені через гіпергеометричні функції 
Аппеля, так само як у випадку квадратично-кубічної форми нелінійного показника 
заломлення, який був описаний раніше. Розв’язки отримані завдяки використанню 
симетрії Лі. 

Ключові слова: стаціонарні оптичні солітони, симетрія Лі 


