Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 1
OPTICAL SOLITONS FOR THE DISPERSIVE CONCATENATION MODEL BY LAPLACE-ADOMIAN DECOMPOSITION
1O. Gonzalez-Gaxiola, 2,3,4,5Anjan Biswas, 6,7Yakup Yildirim and 8Anwar Jaafar Mohamad Jawad
1Applied Mathematics and Systems Department, Universidad Autonoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, 05348 Mexico City, Mexico 2Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA 3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA) Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia 4Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania 5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa 6Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey 7Department of Mathematics, Near East University, 99138 Nicosia, Cyprus 8Department of Computer Technical Engineering, Al-Rafidain University College, 10064 Baghdad, Iraq
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 1 , pp. 01094 - 01105 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.01094
ABSTRACT
Keywords:
solitons, Schrodinger equation, concatenation model, Adomian polynomials
UDC:
535.32
- Jawad, A. J. M., & Abu-AlShaeer, M. J. (2023). Highly dispersive optical solitons with cubic law and cubic-quinticseptic law nonlinearities by two methods. Al-Rafidain J. Eng. Sci., 1(1), 1-8. doi:10.61268/sapgh524
- Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361. doi:10.1016/j.physleta.2013.11.031
- Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907. doi:10.1103/PhysRevE.89.012907
- Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2014). Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Physical Review E, 90(3), 032922. doi:10.1103/PhysRevE.90.032922
- Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2015). Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Physical Review E, 91(3), 032928. doi:10.1103/PhysRevE.91.032928
- Chowdury, A., Kedziora, D. J., Ankiewicz, A., & Akhmediev, N. (2015). Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Physical Review E, 91(2), 022919. doi:10.1103/PhysRevE.91.022919
- Arnous, A. H., Mirzazadeh, M., Biswas, A., Yıldırım, Y., Triki, H., & Asiri, A. (2023). A wide spectrum of optical solitons for the dispersive concatenation model. Journal of Optics, 1-27. doi:10.1007/s12596-023-01383-8
- González-Gaxiola, O., Biswas, A., Ruiz de Chavez, J., & Asiri, A. (2023). Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme. Ukrainian Journal of Physical Optics, 24(3), 222 - 234. doi:10.3116/16091833/24/3/222/2023
- Shohib Reham, M.A., Alngar Mohamed, E.M., Biswas, A., Yildirim, Y., Triki, H., Moraru, L., Catalina, I., Lucian, G.P. & Asiri, A. (2023). Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian Journal of Physical Optics, 24(3), 248 - 261. doi:10.3116/16091833/24/3/248/2023
- Biswas, A., Vega-Guzmán, J. M., Yildirim, Y., Moshokoa, S. P., Aphane, M., & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukrainian Journal of Physical Optics, 24(3), 185 - 192. doi:10.3116/16091833/24/3/185/2023
- Biswas, A., Vega-Guzmán, J., Yildirim, Y., & Asiri, A. (2023). Optical Solitons for the Dispersive Concatenation Model: Undetermined Coefficients. Contemporary Mathematics, 951-961. doi:10.37256/cm.4420233618
- Zayed, E. M., Gepreel, K. A., El-Horbaty, M., Biswas, A., Yildirim, Y., Triki, H., & Asiri, A. (2023). Optical solitons for the dispersive concatenation model. Contemporary Mathematics, 592-611. doi:10.37256/cm.4320233321
- Adomian, G., & Rach, R. (1986). On the solution of nonlinear differential equations with convolution product nonlinearities. Journal of mathematical analysis and applications, 114(1), 171-175. doi:10.1016/0022-247X(86)90074-0
- Adomian, G. (2013). Solving frontier problems of physics: the decomposition method (Vol. 60). Springer Science & Business Media.
- Mohammed, A. S. H. F., & Bakodah, H. O. (2020). Numerical investigation of the Adomian-based methods with w-shaped optical solitons of Chen-Lee-Liu equation. Physica Scripta, 96(3), 035206. doi:10.1088/1402-4896/abd0bb
- Duan, J. S. (2011). Convenient analytic recurrence algorithms for the Adomian polynomials. Applied Mathematics and Computation, 217(13), 6337-6348. doi:10.1016/j.amc.2011.01.007
-
У цій роботі чисельно досліджені світлі та темні оптичні солітони, які виникають із моделі дисперсійної конкатенації. В моделі закладено закон Керра для нелінійного показника заломлення з використанням схем розкладання Лапласа-Адоміана. В роботі представлено результати моделювання, поверхнями та двомірними графіками. Показано, що похибка є нескінченно малою.
Ключові слова: солітони, рівняння Шредінгера, конкатенаційна модель, поліноми Адоміана
© Ukrainian Journal of Physical Optics ©