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1. Introduction

About a decade ago, the concept of the concatenation model was conceived. It is the
conjoining of the three most frequently studied models in optoelectronics. They are the
nonlinear Schrédinger’s equation (NLSE), the Sasa-Satsuma equation (SSE), and the
Lakshmanan-Porsezian-Daniel (LPD) [1-3]. Subsequently, the concept of the dispersive
concatenation model emerged. This is obtained from the Schrédinger-Hirota equation (SHE),
the LPD model, and the fifth-order NLSE, thus making it into a dispersive version of the
concatenation model that is true to its name [4-6]. Both models were later extensively
studied, and their multiple features have been recovered. These include their conservation
laws, the numerical simulation of the solitons with the concatenation model by the Laplace-
Adomian decomposition method (LADM), recovering the quiescent solitons for nonlinear
chromatic dispersion (DC) using Lie symmetry and several other integration schemes; the
study of the solitons in the presence of white noise; addressing the model with Lie symmetry
and several other features [7-11]. The current paper addresses the dispersive concatenation
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model numerically by the LADM that would illustrate the bright and dark solitons. The
surface plots and contour plots of bright and dark optical solitons are presented. The error
plots are also given for both kinds of solitons, and the error measure for both forms of
solitons is of the order of 10-¢, which is immeasurably small.

2. Model of concatenation with power-law nonlinearity
The dispersive concatenation model takes into account four renowned nonlinear models. They

are the SHE, LPD, and NLSE of the fifth order. This is the first time it has been written as [12]:

. 2 .
iq; +aq,y +blq” q—i8,(01Gx + 02192 q,)

2 * *
+83] O3 + 40P Qe + 05l 14 0+ 050 0+ 070,020 + 053002 | &)
2 4
—i53 094 xxxxx + 610|Q| xxx +O—11 |q| dy =0.
+01209xx T 139 9xlxx + 14999 xx T 15(dx)*4x

In Eq. (1), g is a complex-valued function representing the wave profile, while g* is its
complex conjugate qt gives the temporal dispersion, gy is the spatial dispersion, g, gux and
Gxxxx correspond to the higher-order dispersions, and i2 =-1. The first part represents the
evolution in time in a linear manner. Constants a and b are the CD and self-phase

modulation (SPM) coefficients, respectively. The coefficients o with j=1,2,...,15 and J;

with s=1,2,3, are all real constants. We can observe in Eq. (1) the following:

e when 6; =6, =6;=0, Eq. (1) reduces to the standard NLSE;

e if, 6, #0 and 5, =65 =0, Eq. (1) reduced to SHE;

e for 8; =65 =0 with 6, #0, Eq. (1) yields the LPD equation;

« finally, when 6; =5, =0 but 6; %0, Eq. (1) is reduced to quintic-order NLSE.

Eq. (1) is thus a genuine concatenation of the well-known models that characterize soliton
transmission's trans-continental and trans-oceanic dynamics. Using the Adomian
decomposition technique in conjunction with the well-known Laplace transform, optical
solitons for the model given by Eq. (1) will be presented for the first time. Various types of

constraint requirements established for the system's structure can also guarantee the
occurrence of solitons. In subsequent sections, particulars are listed and displayed.

3. The solitons in the governing model
The bright soliton solution to Eq. (1), which was recently investigated utilizing the enhanced

Kudryashov’'s method and the Riccati equation expansion approach in [12], is given by
q(x,t)=[ Ay + Bysech(x —vt) |ei(-rx+ot+6y), (2)
where the soliton frequency is denoted by @, the wavenumber by «, the phase constant by

6,, and the velocity of the soliton by v . Moreover,

A1=+l\/—(A1+2A2)+2A3’ 3)
2 A,
Blz (A1+6A2), (4)

24,

with Ay, A,, Az, and A, connected with the coefficients of the Eq. (1) as follows:
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1
by =—(01p+013+01,), (5)
O9
Ay =2L0, (6)
O9
- 0903\ +03K20 5 + 20,K0 4 + 20,07 — 28,k0g + 8,0, )
A, =21, (8)
O9
The constraints that are required for the existence of bright solitons are:
A, (A +64;)>0, 9)
and
A,[(Ay +24,)+245]<0. (10)

As shown in [12], the dark solitons for the model given by Eq. (1) have also been found. They
are given by:
A
x,t)=| 4, + B,tanh| =(x—-vt

xel(~kx+at+6y),

where AeR and

1
A, =+—— |20, A2(A{ +2A,)—4A4 |, 12
2= 0, \/ 4[A2(A; +20,)— 445 ] (12)
B,=+-2 [
y =t =20, (A, +64,). (13)
The constraints that are required for the existence of dark solitons are:
D[ A2(A; +20;)— 404 ]>0, (14)
and
A, (A +6A,)<0. (15)

4. Methodology brief overview
In this part, we will provide a concise exposition of the widely used Adomian decomposition

method and its enhanced version, achieved through integrating the approach with the
Laplace transform [13, 14]. The proposed methodology will be employed to acquire bright
solitons for the novel concatenation model with power-law nonlinearity given by Eq. (1). In
general, using operators, we can write Eq. (1) as

D.q(x,t)+Lq(x,t)+Nq(x,t)=0, (16)
subject to an initial condition

q(x,0)= f(x). (17)

In the context of the operational Eq. (16), the operators involved act on a complex-valued
function q as:

D.q=iq;, (18)

Lq(x't) =0aqyy — i610-1qxxx + 520-3qxxxx - i5369qxxxxx' (19)
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2 .
Nq(x,t)=b|q|"q—i8,051q 2 q,
2 * *
+5, [%Iq 2 gy +05|q1* q+ogla,|” a+o4(a,)%q" + ogqquz} (20)
—15 (o2 | 2 4 * * * 2 4%
31 01010]” Gx + 011 1014 @y + 01209, sy + 130" Uy + 0149950 +015(0x)2q |-

It is clear that the operator N is nonlinear. Consequently, according to the Adomian
decomposition approach, it may be decomposed into a series:

sz(CIo k) (21)

where each of the M, is an Adomian polynomial [15]. Also, by the Adomian decomposition

method we have

xt)=> qp(xt). (22)
k=0
To conveniently represent the nonlinear operator denoted by Eq. (21), we may write it as
Ng(x,t) ZNIq xt), (23)
I=1

where
2 . 2 2 4
Niq=blq["q, Npg=-id0,q]" ay, N3q=6,041q]" 4y, N4a=6,05d q,
2 * *
qu = 620-6 |qx| 4, N6q = 520-7(qx)2q i N7q = 520-8qqu2' (24)
. 2 . . x
Ngq = —153010|CI| Qoo No@=—1630111q1* @y, N1gq = 16301549, xx
N11q =—1630130"4qQxxr - N120 = ~1630149G3 05 N13q =—163015(d, )%,
and all nonlinear components Nj,...,N;3 can be decomposed into an infinite series of
Adomian polynomials given by:
Nig=> M} (q0,91,-a), 1=1,2,...,13. (25)
k=0
M|, represents the Adomian polynomials for each /=1,2,...,13 in Eq.(25), which can be

calculated using the formulas established in [16], i.e.
N;(q0), k=0

Ml (q0,q1,---» 26
k(QOQl qn) d k=1,23,... (2€)

Zo ’+1 qz+1 o4 Ml

In this context, the symbol £ will be used to represent the Laplace transform, while £-1 will
represent its inverse operator. Next, we apply the Laplace transform £ to both sides of the
operational Eq. (16) to obtain

L{D,q(x,t)+Lq(x,t)+Nq(x,t)} =0. (27)
By utilizing the initial condition, which is obtained from the initial profiles of the solitons f,

we acquire

Lla(ot)} = ()~ (L{La(x o)} + L{Ng(x0)}). (28)
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By substituting the Egs. (21, 22, 25) into Eq. (28), we get

c{égk(x t>}=§f<x>

Aol {ggne o)

By equating both sides of Eq. (29), we can calculate the Laplace transform of each individual

(29)

component of the solution, that is
L{a(x.0)} = () (30)

The recursive relations can be written as follows for all values of m that are greater than
one:

L{gm(x,0)} = i[L{Lqm ()} + {Z S Ml ..,qm_l)}]. (31)

j=1m=0
In order to calculate Adomian polynomials, we will focus on the nonlinear operators N;

acting on the function q described in Eq. (24). By applying the formula (26), for example, for
n=1, we may get the following results:

Mg = bagds,

M% = b(q3a8 + 2459190 )

b(a3q3 +a5a3 + 2454290 + 2410190 )

= b(q3a8 + qia? + 2450190 + 24302490 + 2439390 + 2039192 )

b(q3a% + 454} + 4503 + 2q354190 + 2459,90 + 2419340 + 2454490 + 2439192 + 2054193 ),

M3 =—i6,0,909000x» M? = —16,05(q19090x + 909190x +9090%1x )
M2 = -i6,05 (q2q090x + 919190x + 909290x + T19091x +909191x + 909092x )

M3 = —i6,6,(q39500x + @29190x + 919590 + 909390x + 92909 1x
+419191x + 909291x + 919092x + 909192 + 909093x)»

Mﬁ =-10107(q490%0x + 939190x + 929590x + 919390x *+ 909490x + 93909 1x T 929191x
+q19391x + Q093%1x + 929092x + 119192x + 909292x T 919093x + 909193x +909094x )

Mg = 5204904090 M3 = 3204 (419090:0 *+ 96T 90xx + 40901100 )»

M3 = 5,04 (0390%0xx + 91T 90xx + 9092T0xx + 910913x + 9091 1x + A0092x )

M3 = 8,04(@3000x + B%190xx * 9192T0xx *+ 09301
43908 1x + N91 %15 T 90929 1x + D109 25 T 0192xx + 40909350 )>

M3 = 6,04(q49090xx + B3%190xx + D29290xx +919390xx + 90a90xx + B3T0T100 + BD1T1xx
419201 xx + A093%1xx + D29092xx + D1%12x0 + 092200 + T190D35x + A09193xx + A090T 401 )
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Mg = 5,0500°q3,

M$ = 8,05 (20593a3 +340°0:193 )

M} = 5,05 (q:%q3 + 2450543 + 645939193 +390°42498 +395°9340 ),

M3 = 5,05(2419,q3 + 2409393 + 39120194 + 690929194 + 690919298 + 390°439%
+64501q790 +640°419290 +0°93)s

M =8,05(a,%q3 + 2019343 + 2469495 + 641950198 + 640939198 + 30129245 + 6409945
+64001995 + 34024493 +391°a340 + 640939790 + 3404390 + 124591919290 *+ 696°019390
+2q050193 +340%9592),

Mg = 0,06q090x0x»
M3 = 6,06 (q0q0xq1x + 9095x90x + T190xT0x )»
M3 = 5,06 (q00x92x + Q01x91x + 90%2x90x + D190x91x + T191x90x +9290x90x )

M. 35 =0,06(q00x3x + A0T1xT2x + D0T2xT1x + D0T3x0x + D190xT2x
+4191x1x + U BoxT0x + 9290x1x + D291x90x + 9390x0x )

M3 = 5,06(00%0x94x + A0q1x93x + Q0%2x92x +90T3x1x + 0T4x90x +190xT3x + 9191 x2x
+q192x91x + T193x90x + 9290x92x T D291x%1x T 9292x90x + 9390x1x + 9391x0x + 9490x90x )

M 8 =06,0 7613)(615'

M = 6,07 (4103 + 24501501 )»

M$ = 6,07 (4303, + 4503 +2502xox + 241011k0x )

M§ = 5,07 (4398, + 4193 + 2058190x + 243 92x%0x +20593:0x + 24091x%2x )

M3 = 6,07(q3953, + 3393, + 9095 +24391x0x + 29392xT0x + 201935 90x + 290942 90x
+2q191x%2x + 24091595 )

M 5 =06,0. 8q5q6xx'

M7 = 5,05 (4847 + 209190 )

M = 8,08 (@ pux + 200920 + 240D T + BB )»

MJ = 5,05 (a3 xx + 201926 + 209300 *+ 20092100 + 29091 Tx + UGB )»

M} = 6,04(q2 5 + 2019201 xx + A390xx + 20193%0xx + 2009490 xx

+2q093q1 xx + 29092%5xx + 29091 %3 xx + 6axx):

Mg =—i03010q09090xxx
M§ = ~id;304 (qoqaqlxxx +qoq19oxxx + qquqOXXX)'

M8 = —i63010 (90%5T2xxx + Q091 9100x + D095%0x00¢ + T190%1x0x + 9191 90xxx + 9290%0xxx )
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M?? = _i53610(q0q8q3xxx + quIqZXXX + qu;qlxxx + qongOXXX + qquqZXXX + qquqlxxx

+q1qzq0xxx + qusqlxxx + quIQO){xx + q3q(§q0xxx)'

M g = _i53o-10(q0q8q4xxx + quiq3xxx + qu;qZXXX + q0q>3kq1xxx + quZquxx
+q1q6q3xxx + qquqZXXX + qlnglxxx + q1q§q0xxx + quSqZXXX
+201 910 + 929290xxx + 43909 1xxx + 9391 90xxx + 9490%0100x D>

M 8 =-1630 11615‘182%)('

M7 =-i6301 (q%qazqo)( +q591°qox +9590°1x )

M3 = i8530, (a3d0%dox + 4341 %dox *+9395%d0x + 9340%d1x + 934:1%d1x + 340224 )

M3 =~i63011 (4300 oy +a341°dox + 4702%dox +9895°0x + A590°1x * 97911 +A592°1x
+4346%q2x +4391%02x +4340°03:);

M3 = ~i63011(a390%ox + 4391 %dox +a392°dox +4793°Aox +4394°q0x +4390°01x +4391%01x

+q395%01, + 4305201 + 9396%0x + G291 020 + A395202x + A390°03x + 93012035 + 9890°Dax);

M0 = ~i5301 G090 0x
M0 = ~i63015 (G000 91x + A0Tixx0x + T1%0xx0x )
M}0 = ~i853015 (Qo0xx2x + 9081 xxTrx T 093xxox + A90ed1x + Uixedox +D20x:90x )
M30 = —i63015(q090xxB3x + D0T1xxT2x + D0D2xxT1x + DoT3xTox + U100 T2x
+q1G1xx91x T D12xxox + 4290xT1xx + D291xx90x + D30xx0x )

M‘%O = _i63612(q0q8qu4x + quIqu3x + qu;quZX + qoququx
+q0q2qu0x + q1q6qu3x + qququZX + qlq;qulx + qlququX
200, 2x + D201xx1x + D292x0x + D390:x91x + 9391 xx0x + 9a90xx90x):

M&l = _i53613q6q0xq0xx'
MIL =830 5 (410 B0 + TTaxoxs + Todoxr )
M%l = 1630713 (q;qOXqux + qulquXX + quZXqOXX + quOquxx + qsqlquxx + qaqoxqzxx )’
Mg = ~i53013(q390xG0xx + 9391x0x + A1d2:902x + 40935 90xx T 920xT1x
+q ;qlquxx + qququxx + CIIqOXqZXX + qaqlquXX + quOX d3xx ),

M 1}1 = _530-13(q1q0xq0xx + nglquxx + q;qZXqOXX + qikq3xq0xx + ‘I(*)%x%xx
+q§q0xq1xx + q;qlquxx + quZquxx + q6q3xq1xx + q;quqZXX + qulquXX
+q6q2xq2xx + qu0xq3xx + q6q1Xq3xx + q6q0xq4xx)'

M§? = ~i6301495,d0%0xx
M2 = ~i63014 (41 xG0T0xx +T0xT190xx + D0xT01x )
1‘/[212 = _163614- (q;XquOXX + qIquqOXX + qSXquOXX + qIXqul)(X + qaquqlxx + qsquqZXX ) ’

M %2 =-i 53014(q§xq0q0xx + q;quqOXX + qIXquOXX + q5xq3q0xx + q;xqoqlxx
+quq1q1xx + ququlxx + ququZXx + q6xq1q2xx + q8xq0q3xx)'
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MA}Z = _530-14(q2xq0q0xx + q;quqOXX + q;quqOXX + qfxq3q0xx + quq4qux
+q§xq0q1xx + q;quqlxx + ququlxx + q6xq3q1xx + q;XquZXX + qIquqZXX
+q0x 9222 + Q1x9093xx + 0x91932x + 0x9094xx )

M§? =~i5301506,90x
M3 =—i§,c (* 2 42 )
1 3015\ 41x490x T 490x91x90x )
M%3 = _i530-15 (q;xq(%x + qSXq%x + ZqSXqZXqOX + ZqIququX ) ,
M33 =—i83015 (@508, + G1x 8 + 255 G1x0x + 205 xx0x + 200, 03:90x + 2005915921 )»
M3 = ~i63015(qax Gy + ToxD3x + 90xT%x + 2035 T1x0x + 2935925 90x

+2quq3xq0x + anqul-qux + Zq{ququX + ququxq3x)'

and similarly for a variety of other Adomian polynomials.
Eventually, when contemplating the inverse Laplace transform £-1, the components q,, q;, q;,

and so forth, are subsequently ascertained through an iterative procedure, which is given as:

qolx.6)= £(x),
13 |
ai(0t) =L LRaCe 0+ 2 [e{3 a1 1),

j=1

13
0200 =L LtRa o)+ {43 o an)}]) (32)
j=1

13
g, (x,t)= —E—l(%E{qu_l(x,t)} + %[L{Z P (o nama)}]), m=1.
j=1

where g is referred to as the zeroth component, which is taken as the initial condition in

this method. Within the context of the Laplace-Adomian decomposition approach, the
solution functions q are generated as

M8

Qe (x.t)- (33)
k=0

g(xt)=

5. Numerical and graphic results
An approximation level of N steps will be used to obtain solutions for system (1) under

some parameter sets and initial conditions in order to demonstrate the efficacy, utility, and

precision of LADM in solving directly applicable mathematical models.

5.1. Simulations of bright solitons

Example 1: In this particular example, the simulation will be conducted by taking into

account equation (1) with the subsequent collection of coefficients:
a=0.1,b=-04,06, =-64,06,=2.2,6;=0.38,
0,=23,0,=04,03=15,0,=5505=-11, (34)
0, =0.2,0,=-53,05=3.1,09=0.9, 017=0.6,
011=3.3,01,=0.2,03=16

and with initial condition:

Ukr. ]J. Phys. Opt. 2024, Volume 25, Issue 1 01101



0. Gonzalez-Gaxiola et al

f(x)=(2.33+3.46sech(x))ell-0-88x+0.55],

Fig. 1 illustrates the error committed in this numerical simulation, the two-dimensional
density plot, and the graphical achievements of the three-dimensional profile evolution for
|g|? in a number of N =16 steps.
Example 2. In this particular example, the simulation will be conducted by taking into
account Eq. (1) with the subsequent collection of coefficients:

a=0.5b=9.1,8,=84,0,=4.0,6;=0.9,

0,=01,0,=-72,03=-10,0,=-2.1,05 =5.5,

0 =74,0,=0.3,05=-9.509=3.3,0.5=-51,

041 =0.5,0,,=0.6,0.3=58

(35)

and with initial condition:
f(x)=(—6.33—3.46sech(x))eil-034x+0.95],

Fig. 2 illustrates the error committed in this numerical simulation, the two-dimensional
density plot, and the graphical achievements of the three-dimensional profile evolution for
|q[? in a number of N =16 steps.

Iql‘ Errﬂr

Fig. 1. 3D optical bright soliton solution of Eq. (1) (left); 2D density graphs represent bright soliton
evolution (center); the absolute error in the simulation for a total of N =16 steps, using the parameter
values presented in example 1 (right).

lgl* Error

Fig. 2. 3D optical bright soliton solution of Eq. (1) (left); 2D density graphs represent bright soliton
evolution (center); the absolute error in the simulation for a total of N =16 steps, using the parameter
values presented in example 2 (right).

5.2. Simulations of dark solitons
Example 3. In this particular example, the simulation will be conducted by taking into
account equation (1) with the subsequent collection of coefficients:
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a=3.2,b=6.1,6,=0.6,8,=3.3,6;=4.5,
0,=0.3,0,=-78,03=-9.2,0,=-82,05=7.2,
0 =6.6,0,=-2.7,05=7.2,09=5.5,09=4.2,
011 =0.1,04,=05,03=44

(36)

and with initial condition:
f(x)=(2.1+1.25tanh(4.5x))ei[205x-5.3],
Fig. 3 illustrates the error committed in this numerical simulation, the two-dimensional
density plot, and the graphical achievements of the three-dimensional profile evolution for
|g[? in a number of N =16 steps.
Example 4. In this particular example, the simulation will be conducted by taking into
account Eq. (1) with the subsequent collection of coefficients:
a=91,b=-05,0,=73,6,=14,6;=8258,
0,=-54,0,=-03,03=-09,0,=42,0;=-04,
0 =5.1,0,=82,053=0.6,09g=-2.3,0,,=0.1,
011 =09,0,,=57,0.3=05

(37)

and with initial condition:
f(x)=(2.5+0.5tanh(4.1x) )ei[2.05x-53],

Fig. 4 illustrates the error committed in this numerical simulation, the two-dimensional
density plot, and the graphical achievements of the three-dimensional profile evolution for
|g|? in a number of N =16 steps.

Tk Errar

Fig. 3. 3D optical dark soliton solution of Eq. (1) (left); 2D density graphs represent dark soliton
evolution (center); the absolute error in the simulation for a total of N =16 steps, using the parameter
values presented in example 3 (right).

1q1* Errar

Fig. 4. 3D optical dark soliton solution of Eq. (1) (left); 2D density graphs represent dark soliton
evolution (center); the absolute error in the simulation for a total of N =16 steps, using the parameter
values presented in example 4 (right).
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6. Conclusions
In the frame of the dispersive concatenation model, the current paper, using numerical

simulations, revealed the bright and dark 1-soliton solutions of the dispersive concatenation
model studied with the Kerr law of nonlinearity. The infinitesimally small error measure was
particularly noticeable. These results are in the same spirit as previously reported ones from
the concatenation model. The current paper stands on a strong footing to expand the work
further in the same spirit. Later, the work will be extended to the concatenation and
dispersive concatenation models with the power-law of nonlinearity. Additionally, the model
will be numerically addressed for additional forms of optoelectronic devices using LADM,
and they are fibers with differential group delay and dispersion-flattened fibers. The results
of those research activities will be disseminated with time.
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Optical Solitons for the Dispersive

Anomauin. YV yiti pobomi uuceibHoO O0CHIONCEHI CEIMIL Ma MeMHI ONMUYHI CONIMOHU, SKI
BUHUKAIOMb [3 MoOeni OucnepcitiHoi Konkamenayii. B modeni 3axnadeno 3axon Keppa 0ns
HENIHIIH020 NOKA3HUKA 3AN0OMIEHHS 3 BUKOPUCIAHHAM cxem poskiadanus Jlanaiaca-Adomiana. B
pobomi npedCmagneHo pe3yibmamu MOOeNI08AHHs, NOBEPXHAMU MA OBOMIpHUMU epagdikamu.
Tlokazano, wo noxubra € HeCKIHYEeHHO MALOI0.

Knouosi cnosa: conimonu, pisnusanns Illpedineepa, Konkamenayiina MoO0eib, NOAIHOMU
Aodomiana.

Ukr. ]J. Phys. Opt. 2024, Volume 25, Issue 1 01105





