Ukrainian Journal of Physical Optics
2024 Volume 25, Issue 1
OPTICAL SOLITONS FOR THE CONCATENATION MODEL WITH KERR LAW NONLINEARITY BY LIE SYMMETRY
Sushmita Kumari Dubey1, Sachin Kumar1, Sandeep Malik1, Anjan Biswas2,3,4,5, Anwar Jafaar Mohamad Jawad6, Yakup Yildirim7,8, Luminita Moraru9 and Ali Saleh Alshomrani3
1Department of Mathematics and Statistics, Central University of Punjab, Bathinda-151401, Punjab, India 2Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA 3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia 4Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania 5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa 6Department of Computer Technical Engineering, Al Rafidain University College, 10064 Baghdad, Iraq 7Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey 8Department of Mathematics, Near East University, 99138 Nicosia, Cyprus 9Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008, Romania
Ukr. J. Phys. Opt.
Vol. 25
,
Issue 1 , pp. 01073 - 01084 (2024).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2024.01073
ABSTRACT
Keywords:
solitons, tanh method, Arnous' method
UDC:
535.32
- Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361. doi:10.1016/j.physleta.2013.11.031
- Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907. doi:10.1103/physreve.89.012907
- Arnous, A. H., Biswas, A., Kara, A. H., Yildirim, Y., Moraru, L., Iticescu, C., Moldovanu, S., & Alghamdi, A. A. (2023). Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (internet traffic regulation). Journal of the European Optical Society-Rapid Publications, 19(2), 35. doi:10.1051/jeos/2023031
- Biswas, A., Vega—Guzman, J. M., Yildirim, Y., Moshokoa, S. P., Aphane, M. & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukrainian Journal of Physical Optics, 24(3), 185-192. doi:10.3116/16091833/24/3/185/2023
- González-Gaxiola, O., Biswas, A., Chavez, J. R. D., & Asiri, A. (2023). Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme. Ukrainian Journal of Physical Optics, 24(3), 222-234. doi:10.3116/16091833/24/3/222/2023
- Kudryashov, N. A., Biswas, A., Borodina, A. G., Yıldırım, Y., & Alshehri, H. M. (2023). Painlevé analysis and optical solitons for a concatenated model. Optik, 272, 170255. doi:10.1016/j.ijleo.2022.170255
- Kukkar, A., Kumar, S., Malik, S., Biswas, A., Yıldırım, Y., Moshokoa, S. P., ... & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with Kurdryashov's approaches. Ukrainian Journal of Physical Optics, 24(2), 155 - 160. doi:10.3116/16091833/24/2/155/2023
- Tang, L., Biswas, A., Yıldırım, Y., & Alghamdi, A. A. (2023). Bifurcation analysis and optical solitons for the concatenation model. Physics Letters A, 128943. doi:10.1016/j.physleta.2023.128943
- Wang, M. Y., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., & Alshehri, H. M. (2022). Optical solitons for a concatenation model by trial equation approach. Electronics, 12(1), 19. doi:10.3390/electronics12010019
- Yıldırım, Y., Biswas, A., Moraru, L., & Alghamdi, A. A. (2023). Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion. Mathematics, 11(7), 1709. doi:10.3390/math11071709
- Bluman, G., & Anco, S. (2008). Symmetry and integration methods for differential equations (Vol. 154). Springer Science & Business Media.
- Olver, P. J. (1993). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media.
- Kumar, M., & Tanwar, D. V. (2019). On Lie symmetries and invariant solutions of (2+ 1)–dimensional Gardner equation. Communications in Nonlinear Science and Numerical Simulation, 69, 45-57. doi:10.1016/j.cnsns.2018.09.009
- Zhang, J., Wei, X., & Lu, Y. (2008). A generalized (G′/G)-expansion method and its applications. Physics Letters A, 372(20), 3653-3658. doi:10.1016/j.physleta.2008.02.027
- Abdou, M. A. (2007). The extended tanh method and its applications for solving nonlinear physical models. Applied mathematics and computation, 190(1), 988-996. doi:10.1016/j.amc.2007.01.070
-
У статті використовується аналіз симетрії Лі для інтеграції вивченої моделі конкатенації із законом Керра автофазової автомодуляції. Наведене звичайне диференціальне рівняння інтегрується з допомогою двох підходів: розширеного tanh- методу і узагальненого підходу Арнуса. Це дало темні та сингулярні солітони для моделі.
Ключові слова: солітони, метод гіперболічного тангенсу, метод Арнуса
© Ukrainian Journal of Physical Optics ©