Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 1


ISSN 1609-1833 (Print)

OPTICAL SOLITONS FOR THE CONCATENATION MODEL WITH KERR LAW NONLINEARITY BY LIE SYMMETRY

Sushmita Kumari Dubey1, Sachin Kumar1, Sandeep Malik1, Anjan Biswas2,3,4,5, Anwar Jafaar Mohamad Jawad6, Yakup Yildirim7,8, Luminita Moraru9 and Ali Saleh Alshomrani3

1Department of Mathematics and Statistics, Central University of Punjab, Bathinda-151401, Punjab, India
2Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
4Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania
5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa
6Department of Computer Technical Engineering, Al Rafidain University College, 10064 Baghdad, Iraq
7Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey
8Department of Mathematics, Near East University, 99138 Nicosia, Cyprus
9Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008, Romania

ABSTRACT

This paper employs the Lie symmetry analysis to integrate the concatenation model studied with the Kerr law of self-phase modulation. The reduced ordinary differential equation is integrated using two approaches, which are the extended tanh method and the generalized Arnous’ approach. These yielded dark and singular solitons for the model.

Keywords: solitons, tanh method, Arnous' method

UDC: 535.32

    1. Ankiewicz, A., & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A, 378(4), 358-361. doi:10.1016/j.physleta.2013.11.031
    2. Ankiewicz, A., Wang, Y., Wabnitz, S., & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89(1), 012907. doi:10.1103/physreve.89.012907
    3. Arnous, A. H., Biswas, A., Kara, A. H., Yildirim, Y., Moraru, L., Iticescu, C., Moldovanu, S., & Alghamdi, A. A. (2023). Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (internet traffic regulation). Journal of the European Optical Society-Rapid Publications, 19(2), 35. doi:10.1051/jeos/2023031
    4. Biswas, A., Vega—Guzman, J. M., Yildirim, Y., Moshokoa, S. P., Aphane, M. & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukrainian Journal of Physical Optics, 24(3), 185-192. doi:10.3116/16091833/24/3/185/2023
    5. González-Gaxiola, O., Biswas, A., Chavez, J. R. D., & Asiri, A. (2023). Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme. Ukrainian Journal of Physical Optics, 24(3), 222-234. doi:10.3116/16091833/24/3/222/2023
    6. Kudryashov, N. A., Biswas, A., Borodina, A. G., Yıldırım, Y., & Alshehri, H. M. (2023). Painlevé analysis and optical solitons for a concatenated model. Optik, 272, 170255. doi:10.1016/j.ijleo.2022.170255
    7. Kukkar, A., Kumar, S., Malik, S., Biswas, A., Yıldırım, Y., Moshokoa, S. P., ... & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with Kurdryashov's approaches. Ukrainian Journal of Physical Optics, 24(2), 155 - 160. doi:10.3116/16091833/24/2/155/2023
    8. Tang, L., Biswas, A., Yıldırım, Y., & Alghamdi, A. A. (2023). Bifurcation analysis and optical solitons for the concatenation model. Physics Letters A, 128943. doi:10.1016/j.physleta.2023.128943
    9. Wang, M. Y., Biswas, A., Yıldırım, Y., Moraru, L., Moldovanu, S., & Alshehri, H. M. (2022). Optical solitons for a concatenation model by trial equation approach. Electronics, 12(1), 19. doi:10.3390/electronics12010019
    10. Yıldırım, Y., Biswas, A., Moraru, L., & Alghamdi, A. A. (2023). Quiescent optical solitons for the concatenation model with nonlinear chromatic dispersion. Mathematics, 11(7), 1709. doi:10.3390/math11071709
    11. Bluman, G., & Anco, S. (2008). Symmetry and integration methods for differential equations (Vol. 154). Springer Science & Business Media.
    12. Olver, P. J. (1993). Applications of Lie groups to differential equations (Vol. 107). Springer Science & Business Media.
    13. Kumar, M., & Tanwar, D. V. (2019). On Lie symmetries and invariant solutions of (2+ 1)–dimensional Gardner equation. Communications in Nonlinear Science and Numerical Simulation, 69, 45-57. doi:10.1016/j.cnsns.2018.09.009
    14. Zhang, J., Wei, X., & Lu, Y. (2008). A generalized (G′/G)-expansion method and its applications. Physics Letters A, 372(20), 3653-3658. doi:10.1016/j.physleta.2008.02.027
    15. Abdou, M. A. (2007). The extended tanh method and its applications for solving nonlinear physical models. Applied mathematics and computation, 190(1), 988-996. doi:10.1016/j.amc.2007.01.070

    У статті використовується аналіз симетрії Лі для інтеграції вивченої моделі конкатенації із законом Керра автофазової автомодуляції. Наведене звичайне диференціальне рівняння інтегрується з допомогою двох підходів: розширеного tanh- методу і узагальненого підходу Арнуса. Це дало темні та сингулярні солітони для моделі.

    Ключові слова: солітони, метод гіперболічного тангенсу, метод Арнуса


© Ukrainian Journal of Physical Optics ©