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1. Introduction

The concatenation model was first proposed exactly a decade ago by conjoining three of the
well-known preexisting equations from nonlinear optics. They are the nonlinear
Schrodinger’s equation (NLSE), the Lakshmanan-Porsezian-Daniel (LPD) model, and the
Sasa-Satsuma equation (SSE) [1, 2]. Recently, this model has gained enormous popularity
and has its presence across a wide range of journals. Several features of this model have been
studied. These include the numerical analysis of the model, Painleve analysis, application of
the method of undetermined coefficients, quiescent solitons, bifurcation analysis, utilization
of Kudryashov’s approach, trial equation approach, solitons in magneto-optic waveguides,
application to internet traffic control and several many other features [3-10]. Very recently,
the model has been studied with differential group delay and the soliton solution from such a
model has also been recovered. Thus, a wide range of features of this model and a plethora of
applications to various optoelectronic devices has been uncovered.
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The current paper will cover a new ground that has not been featured in the past. The
powerful method of Lie symmetry will be implemented to address the model. This approach will
first reduce the governing partial differential equation to a pair of ordinary differential equations
(ODEs), just as the method of traveling wave hypothesis does. The difference is that Lie symmetry
is a fancy approach while the traveling wave hypothesis is a fairly simple and straightforward
approach. These ODEs are next going to be integrated using two approaches, namely the
extended tanh method and the generalized Arnous’ scheme. The details are jotted in the rest of
the paper after a succinct introduction to the governing model.

2. Lie symmetry analysis
The concatenation model is structured as [1, 2]
iq, + Qo + b1 G G+ 1[0 + 520, 20" + 351, P 4+ 5ala P G + 354700+
3611 aJics[ 70, + 3|a ? q +5042431=0, i=/~1. M
Eq. (1) is the dimensionless structure of the model that is considered with the Kerr law of
nonlinearity. The first term is the linear temporal evolution while a is the coefficient of

chromatic dispersion, b and J; are the coefficients of self-phase modulation (SPM) that
stems from Kerr's law of nonlinear refractive index change. Next 6; and &, are the

coefficients of third-order dispersion and fourth-order dispersion, respectively. Finally, the
coefficients 6,, d3, 63 and dy imply the additional nonlinear effects, while the coefficients

0, and Jg give the nonlinear dispersive effects. The independent variables are x and ¢t

respectively and represent the spatial and temporal co-ordinates while the dependent
variable q(x,t) accounts for the wave amplitude.

The three individual models that Eq. (1) comprises of are embedded in it. The first three
terms are from NLSE. The coefficient of c¢; is from the LPD model while the coefficient of c; is
due to SSE. Thus, Eq. (1) is the desired and the newly proposed concatenation model with
the Kerr law of SPM. This model (1) will be first addressed by Lie symmetry analysis and
subsequently by the two aforesaid integration schemes that will reveal dark and singular
solitons and their combination thereof.

In this section, we will apply the Lie classical method on Eq. (1) in order to obtain the
infinitesimals. Now, we will assume

g(xt)=uxt)+iv(x,t), 2
where u and v are real-valued functions. Eq. (2) transform Eq. (1) into real and imaginary
portions as
Vi o Qg+ DU + V2 (Sl ) + G~V P+ (1, 2D+ 28,(u ) (v, v
N o3(uu, +vv, Ju
TGz

—Co(O7V ey + 20guv, + v, ((8g — O Ju2 +vZ(6g +64))) =0,

+ 04Uz +v2u,, + 05(—v2 +u)u,, +265uvv,, +6¢(u? +vZ)2u)

(3)
Up +av,, +bUZ + V2 + ¢ ((01V 0 ) — 02 (—(vy )2 + (U, )2 v + 26, (u, ) (v, Ju

N os(uu, +vv, v

Nuz +v2

—Co(Ogllyyy + 20qUvV, + U, ((6g — Og V2 +UuZ(S5g + 64))) = 0.

+ 04Uz +V2)v,, —65(—v2 +ul)v,, +20:uvu,, + 0g(u2 +v2)2v)
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The basic methodology for obtaining the infinitesimal generators of the system (3), which is

derived from Eq. (1) is presented in this section. Consider a one-parameter (g) Lie group of

point transformations, which leave system (3) invariant, as follows:
x*=x+0&(x,tuv)+0(02),
t*=t+o7(x,t,u,v)+0(02),

. (4)
u=u+on(xtuv)+0(02),
Vi =v+o¢(x,t,u,v)+0(02),

where &£, 7, 7 and ¢ are known as infinitesimal symmetries relyingon x, ¢, u and v. The

infinitesimal generator V, also known as a vector field, associated with the preceding

transformation is given by
0 0 0 0
V=¢(—+1—4+n—+¢—. 5
‘o T Mo a0 ()
If symmetries of system (3) are generated by infinitesimal generator V', then it must satisfy
the invariance condition:

Pr(4)V(A) =0, (6)

whenever A=0 in system (3). Here, Pr(4) represents the fourth-order prolongation, which

can be written as

Pr(4) :V+nti+77x 0 +1xx 0 + 7 xx 0 + 1pxXxx 0
0 t aux auxx auxxx auxxxx (7)
+¢ti+¢xi+¢xxi+¢xxx 0 +¢XXXX 0 ,
0 Ut a Ux 0 Uxx 0 Uxxx 0 Uxxxx

where nt, nx, nxx, pxxx  pxxx @t @x  pxx, Hxxx and ¢xxx are known as extended
infinitesimals (for more details, see [1, 2]). By applying the prolongation formula (7) to the
system (3), a system of determining equations has been obtained. The following
infinitesimals were obtained after solving those determining equations:
E=cy, T=Cyn=0C3v, = —C3U. (8)
Thus, the Lie algebra of symmetries of the system (3) can be spanned by the following
vector fields:
v, =§, v, =a%, A =v%—u% ©)

Using the similarity variables, now we reduce the governing model (1) into non-linear ordinary
differential equations. To do so, we must solve the characteristic equation

dx _ dt _ du _ dv ’ (10)
E(xtuv) t(xtuv) n(xtuv) ¢(xtuv)

where £, 7, ¢ and 1 are given by Eq. (8). On solving Lagrange’s (10), by taking the generator

Va+uVy +AV,, where u and A are arbitrary real numbers, we have the following similarity
variables:

E=h(x—-vt), u(xt)=Q(&)cos(g(xt)),
v(x,t)=Q(&)sin(¢(x,t)), ¢(x,t)=—kx+aot+6.

where k, o, 8 are the wave number, the wave frequency, and the phase constant, respectively.

(11
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Hence, from Eq. (2), we derive
q(x,t)=Q(&)eiHxrot+0), (12)

Using Eq. (11) in Eq. (1), we obtain the real part as

¢161h*Q™ +(c164h? + ¢165h2)Q2Q" + (¢, 6,02 +¢163h2)Q(Q')

+(ah? — 6c¢,6,h%k? + 3¢c,6,kh2)Q" + ¢,0Q5 + (b — ¢16,k2 + ¢, 55k2 (13)

—€104k2 + c,0gk —c300k)Q3 + (—w —akZ + ¢, 6, k* —c,67k3)Q =0,
and the imaginary part as

(—4c,61kh3 +c,6,h3 ) Q"""+ (—~hv —2ahk + 4c,6,k3h—3c,6,hk2) Q'

+(=2¢,6,hk — 2¢,6,4hk + 2¢,55kh+ c,0gh + ¢,64h)Q2Q" = 0, (14)
where Q' =dQ—(§), Q" =dZQ—(§) , Q" =d3Q—(éj), and Q"" =d40—(§) . By employing the
dé dé2 dés dé4
following constraints
—4c,61kh3 +c,6,h3 =0, (15)
—2¢10,hk —2¢18,4hk + 2¢,65kh + c,0gh + c,04h =0,
one can obtain the velocity of the soliton from Eq. (14) as
v =—-2ak +4c,6,k3 —3c,0,k2. (16)
Now, Eq. (13) can be rewritten as
A0+ A02Q+ A3Q(Q')2 + A4Q "'+ AsQ5 + AgQ3 + 4,0 =0, (17)
where,
Ay =cy0,h%,
Ay =c104h2 +c 0502,
Ay =c10,h2 +¢,65h2,
A, =ah? —6c,6,h2k? + 3c,0,kh2, (18)

A5 :Clé‘ﬁ’

3. Extended tanh method
In this section, we will derive the solutions of Eq. (17) by employing the extended tanh

method [15]. The extended tanh scheme suggests the solution of Eq. (17) in the following
form
n n
Q(é):ZBj tanhi (m&)+ ZC]- tanh—Jj (m&), (19)
i=0 j=1
where B; and Cj are arbitrary constants and at least one of them should be non-zero, m is
the wave width. By balancing the terms Q""" and @5 from Eq. (17), we have n=1. Therefore,
solution of Eq. (17), takes the form
c
= B, + B;tanh(mé )+ —1—.

Now substituting Eq. (20) into Eq. (17) and by equating terms of the same power of tanh function

(20)

to zero, we get the following system of equations:
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0= 244,Cym* + 24,C3m2 + A,C3m2 + ACS,
0 = 4By A,C?m2 + ByA;C2m?2 + 5By AsCH,
0=—404,C;m* —24,C3m2 + 24, (B3 + 2B,C; ) C;m2
—2A5C?m(Bym+Cym)+ A3B,C¥m2 + 24,C,m?
+45(Cy (203 (B3 +2B,C; )+ 4CEB3 ) + 4B3C3 + B,CH) + A3,
0 = 4A,B\B,Cym2 —4ByA,C?m2 — 2A;B,Cym(Bym+Cym)
+As5 {Cy(4C}B,B, +4C, By (BE + 2B, ))
+By (2C3(B3 +2B,C, )+ 4C2BE )+ 4B, C3 By} + 3A,C2By,
0=164,C;m* - 2A,B,C}m2 — 24, ( BZ +2B,C; ) C;m?
+24,B2C,m? + AL, [ZClszl +(Bym+ Clm)z]
—243B,C;m(B;m+Cym)
—24,C;m2 + Ag(C, {2C2B} +8C, BEB, + (B} + 2B,C, )2}
+By[ 4C2B, B, +4C, By (B +2B,C; ) |+ By (2C7 (B3 +2B,C, )+ 4C2B3 ))
+A4q(Cy (B +2B,Cyt )+ 2B3C, + ByC ) + A€y,
0=-84,B,B,C;m?2 + A;B, (2C;m2B, +(B;m+C;m)?2)
+As {C1 (4C,ByB? +4(Bj +2B,Cy ) ByB; )
+B, (ZC%B% +8C,B3B, + (B} +2B,C, )2)
+B; (4C}ByB; +4C; By (B} +2B,C, ) )}
+Ag (4C1ByB, + (B3 +2B,C; ) By ) + ByAy,
0=164,Bym* + 24,B,C?m2 — 24, (B} + 2B,C, ) B;m?
—24,B3C,m? — 2A4B,Cym(Bym+ C;m) + A;B, (ZClmZBl +(Bym+ Clm)z)
~2A,Bym2 + As(C, (2(B3 +2B,C; ) B} + 4B3B} )
+By (4C,ByB} +4(B3 +2B,C, ) ByB, ) + B (chBf +8C,B2B, + (B +2B,C, )2)
+Aq(2B3By +C,B} + By (B3 +2B,Cy ) + A;By,
0=—44,B\Bfm? + 4A,B0B,C;m? — 2438, (B;m+C,m) Bym + As {4C, BB}
+By (2(B3 +2B,C; ) B + 4BZB? )+ By (4C, BB} + 4(B + 2B,C, ) ByB, )} + 345B,B2,
0=—40A, Bym* + 24, (B} +2B,C; ) Bym2 — 24,B}m?2 + AyC, Bjm?
—243B}(Bym+Cym)m+2A,B;m? 21)
+As(CBf +4B3B3 + By (2(B3 +2B,Cy ) B + 4B3B7 ) ) + AgB},
0= 44,B)B2m?2 + A;B,B2m?2 + 5By AsB},
0 =244, B;m* + 24,B3m?2 + A;B3m?2 + ABS.

After solving system Eq. (21), we have four sets of solutions:
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Set-1. V2[5 8~ Fadyas + 22 )

B;=0,C; = ,By =0,
1 1 24, 0
(—16A,m* + 44, As - Z(AZmZ —‘zﬁj(q |44, 45+ 42 - A
Ay = , (22)
4A;m?
4y = 48AMAA; — 2A,m2Ag + 2A,m2\|—44A; Ag + A2 — 245 A5 + AZ — Ag\|—4A; As + A? .
(46— 44 45+ 42 )m2
Inserting Eq. (22) together with Eq. (11) into Eq. (2), we get a singular soliton solution
q(x,t)=C,coth(mh(x —vt))ei(-kx+ot+6), (23)
Set-2. 24 (4 + 44,85+ 4 )
B1: 'Cl :O,BOZO,
245
(—16A,m* + 44, As - Z(Asz —“;6](, [~44, 85+ 42 - A )
4A;m?
4y - 48A;m*Ag — 24,m2 Ag + 24,m2\|-4 A, As + A2 — 24, A + AZ — Ag\|—44A; A + A2 .
(A6 — J~44, A + A2 )mz
Inserting Eq. (24) together with Eq. (11) into Eq. (2), we get a dark soliton solution
q(x,t)=Bjtanh(mh(x —vt))ei(-kx+at+0), (25)

Fig. 1 showcases several plots illustrating the dark soliton solution (25) within the context of
model Eq. (1), and the specific parameter values employed are as follows: m=1, h=1,
a:]., k:1, 61:1, C2:1, 61:1, 52:1, 63:1, 54:1, 66:1’ 57:1, 68:1’ 59:1,
w=1,and b=1.

la(x, 6)] , 19(x, 8|

0.9
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1 0.7
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-0 0.5

P 0.4

0.3

2 0.2

3 01

-6 -4 -2 0 2
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0.8
S 06
=04
o
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Fig. 1. Profile of a dark soliton solution given
0'0_6 = - 5 5 by Eq. (25): (a) surface plot, (b) contour plot
(c) 2D plot.
X (©)
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Set-3. \/_2 As( Ag + m) \/—ZAS(A(, — 44,45+ A2 )

Bl = 1] Cl = 1]
44, 44,
(~2564,m +447) As + 8( Ag +\-4Ashy + AZ )(Azmz _/:36)
By=0, m=m, A, = , (26)

1645m?

s 7684;m*A; —8A,m2A; — 8A,m2,|—4AsA; + AZ — 2AsA; + A2 + Ag\| 4454, + A2 .
4( Ag +\[-4Ash; + AZ )m2
Inserting Eq. (26) together with Eq. (11) into Eq. (2), we get
q(xt)= I:Bltanh(mh(x —vt))+Cycoth(mh(x —vt))}e"(—k“w”@). (27)

For B; #0 and C; =0, Eq. (27) reduces to a dark soliton solution, while and for B; =0 and
C; #0, Eq. (27) reduces to a singular soliton solution. Therefore (27) is the structure of a

dark-singular straddled soliton

\/—3,41 (A,CE+ =244, A5CH+ AZCE + 64, ACF ~ 3414
m= )

—24A1AsC} +243CT + 6A, AC?
Set-4. _

+24,C3|(-24A5CH +6A,C2 —34, ) Ay + AZCE + 64, A, (28)
34,7 +3,/(-24ACH +6ACF —3A7 ) Ay + ASC}
~36A,AsCH + 2A2CH +124,A,C?

[+2AZC%\/( —24AsC}+6A,C —3A;) Ay + ASCH — 64, A,

T (4,3 +(-2445CH +6ACF —347) Ay + A3CF )

4 =

Inserting Eq. (28) together with Eq. (11) into Eq. (2), we get a dark-singular straddeld solution
q(x,t)=C, [—tanh(mh(x —vt))+ coth(mh(x —vt))]e"(*kxm’”@). (29)

4. Applications of generalized Arnous’ method

In this section, we drive the solutions of Eq. (1) by performing a generalized Arnous’ method

[14]. First, we have to derive the positive integer N, by balancing the terms Q""" and Q5, we
have N =1.Consequently, one gets
o +op'(E

Q(é)=a0+ ! ¢(2) ( )'

as a solution of Eq. (17). Here, the constants «;, a;, and @, are determined later and the

(30)

function ¢(&) satisfies the relation

[¢'($)2]=[#(8)? - x]In(a)2, (31)
with
e [#(E)In(@?, niseven, n>2,
ol _{(b(é)'ln(a)z, nisodd, n>2. (32)

Eg. (31) holds the following solution
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— nia —Z
(&) =kin(a@)ese) et G

where k is the wavevector, and y are arbitrary parameters. Substituting Eq. (30) into

Eq. (17), we get an over-determined system of algebraic equations; by collecting all terms of
the same power and equating them to zero, we get the following system of equations

0=a, [SASIn(a)4 af+ 10(A5a§ + %)azzln(a)z +Asaf + Agad + A7j,

545n(a)* a4 + A;In(a)* a2 + 30A51n(a)2 aga? + Aln(a)*
+AIn(a)’ a2 +5Asat +34gIn(a) ad + Agn(a)’ +3A4ga2 + A ,

0=-2(5Asagaf +ogadAs ) yIn(a)* + In(@)2(—4ogad Ay yIn(a)? + o A; + 30Asagafo
~(—2aga3In(a)2 A; + 10As08a3 + 3460003 ) x ) + 20y AIn(a)? + 104safad +3Aga00f,

0=—2(54s0q04 +3a3a, A3 ) yIn(a)* +(~60y03 A, yIn(a)? + a3 As +10Ase 02
—(84,041In(a)? + aZ AyaqIn(a)? — 4ayadn(a)2 A; + 30450 adas +34g0q04) x)In(a)?
~124,a 7In(a)* + a3 Ayln(a)? — 203 Ayary 7In(a)’ ~ 2a, 7In(a)2 Ay + 10Asaia? + Agadd,

0=(5Asagaf +agadhs) x2n(a)* - (—4a0a22A2 xIn(a)’ + aga A +30Asaga2ad ) xIn(a)’
—4atayA, )(ln(a)2 +5A.ata,

0 =(54scr;0f +3ada; Az ) jgzln(a)4 - (—6a1a22A2 ;(ln(a)2 +adA; + 1040303 ) ggln(a)2
+24A1051;(21n(a)4 - ZafAzgln(a)z +Aa3,

0=(Asa§ +adds)in(a)* +(204,, In(a)’ ~ 203 In(a)’ 4; + 1045030} + Aga} ) In(a)’
—204,0,1n(a)* +a3In(a)* Ay +5Asata, + 345080, + Ayary,

0 = (204501049013 + 2011 0492, A3 )ln(a)2 + 2050, 4,04 ln(a)2
2040, In(a)’ &y As + 20Asaadar, + 6 Aoyt

0=—2(Asx3 + a3 43)x In(a)* + (—203 Ay y In(a)? + 3afa,Aq + 10Asata3
—(204,0, In(a)? — 2a3 In(a)2 A; + 1040803 + Agor3) ) In(a)? (34)
+12A,0 x In(a)* — 2a3 Ay, x In(a)? + 20fa, A, In(a)?
—20fay In(a)2 As — 2a, y In(a)2 A, + 304sataga, + 34g0tay,

0= —(20A5a1a00¢5’ + 20105054 );( ln(a)2 - 8a1a0A2a2;(ln(a)2 +204;03000,,

0=(4Asa5 +adhs) x2 In(a)* - (—2a23A2;( ln(a)2 +3afa,As + 10A5a12a§))(ln(a)2
+24A,0,x210(a)" —6a2 Ay, y In(a) +5Asata,.

Solving the above system by using the software Maple, we get the result as follows

Set-1. 445(1n(a)’ a3 + a3
x=0, ¢;=0, 4, = ,
e In(a)? (35)

A = —2Adn(a) a2 =242, A, = A:(In(a)t a4 —2In(a)’ a2a? + ak).
6 5 2 540 7 5 2 02 0

01080 Ukr. J. Phys. Opt. 2024, Volume 25, Issue 1
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Therefore, by putting Eq. (35) along with Eq. (30) into Eq. (11) and Eq. (12), we have the
solution of the governing model defined by Eq. (1) as

4k2(ln(a))2 (cosh(&In(a))+sinh(&In(a)))

—x(cosh(&In(a))-sinh(£In(a)))
4k2(In(a))*(cosh(&In(a)) +sinh(&In(a))) (36)
+%(cosh(&In(a))—sinh(&In(a)))

q(xt)=| ay+a,

xel(-kx+at+0)
where &= h(x —vt) , a>0, oy, A, 4A,, A; and o, are arbitrary constants. If
x =4k? (ln(a))z, from (36), we have a dark soliton solution as follows
q(xt)= [0‘0 +a, {ln(a)tanh(fln(a))}}ei(*kxm”g). (37)
If y=—4k2 (ln(a))2 , the solution (36) reduces to a singular soliton solution as follows
q(x,t):[aOJraz {ln( Jeoth(&In(a) ]e’( —kx+ot+0), (38)

Set-2. ay =\-xay1In(a),

4A50¢22(—ln(a)2 ajg +a§) 4A5(ln(a)2 az +a§)
A

A = ) =
! 31r1(a)2 2 ln(a)2
44 (In(a)? a2 - 4a2 44 (21n(a)* a4 —51n(a)* a2a? + 30k
A = 5 2 0 A = 5 2 0“2 0 (39)
3 ln(a)2 T 31n(a)2 '

As =-2451n(a)’ o} - 24502,
4y = A (In(a)* af ~2In(a)’ e + ).

Therefore, by putting Eq. (39) along with Eq. (30) into Eq. (11) and Eq. (12), we have the
solution of the governing model defined by Eq. (1) as

(Hazln( +a2)

) o[ cosh(&In(a)) cosh(¢In(a))
X[4k (In(a)) (+Sinh(§ll’l( ))J_l[—sinh(éln( ))B

q(x,t)=| o+ -
, o[ cosh(&In(a)) cosh(&In(a)) (40)
[4k (ln(a)) (Jrsmh(fln(a))] [—smh(éln(a))]]

xel(-kx+at+0)

where &=h(x-vt), a>0, <0, ay and a, are arbitrary constants. If Z:4k2(ln(a))2,

from (40), we have a dark soliton solution as follows
q(xt)= [ao +In(a)a, (\/ In(a)+ 1)tanh(fln(a))]ei(—kxm”g). (41)

If y=—4k2 (ln(a))2 , the solution (40) reduces to a sigular soliton solution as follows

Ukr. ]J. Phys. Opt. 2024, Volume 25, Issue 1 01081
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q(x.t)=[ g +In(a)a,(y=x In(a) +1)coth(&In(a)) JeilHxrar+0) (42)
Set-3. o =0,
Asozzz(—ln(a)2 az +a(§) As(ln(a)2 ag +a§)
b 3In(a)’ . In(a)?
A5(1n(01)2 az —4a§) As (21n(01)4 af —51n(a)2 aga + 3056‘)
Ay = > , Ay = > , (43)
In(a) 3In(a)

Ag =—2451n(a)’ o — 2450,
A; = A (ln(a)4 af - 21n(a)2 agas +af )

Therefore, by putting Eq. (43) along with Eq. (30) into Eq. (11) and Eq. (12), we have the
solution of the governing model (1) as
i cosh(&In(a)) j

##2(In(a)) (+Sinh(§ln((1))
—%(cosh(&In(a))—sinh(&In(a)))
41{2(ln(a))2 (cosh(&In(a))+sinh(£In(a)))
+x(cosh(&In(a))-sinh(&In(a)))

In(a)

ei(-kxrot+0)  (44)

Q(X't) =@t [

where &=h(x-vt), a>0, ay, ¥ and a, are arbitrary constants. If y :4k2(ln(a))2, the
solution (44) give us a dark soliton solution as follows
q(xt)= [0‘0 +a, {ln(a)tanh(fln(a))}}ei(*kxmtm). (45)

If y=—4k2 (ln(ol))2 , the solution (44) reduces to a singular soliton solution given as

q(x,t)= [0‘0 +ay {ln(a)coth(éln(a))}]e"(*k”a’”@). (46)

5. Conclusions
The current paper studied the concatenation model with the aid of Lie symmetry analysis.

Thereafter, the reduced ODE was integrated using a couple of approaches. These are the exten-
ded tanh method and Arnous’ algorithm. These algorithms revealed dark and singular soliton
solutions to the model. Unfortunately, the two adopted approaches failed to recover bright
soliton solutions to the model that are the primary information carrier bits across intercon-
tinental distances. Nevertheless, the Lie symmetry is an advanced mathematical technique to
reduce the given model to the necessary ODE, which can be addressed using additional
integration methodologies such as the enhanced Kudryashov’s approach and many others.

There are wide open possibilities that lay ahead to handle this equation from different
perspectives. One of the very many things that need to be covered is the study of the
concatenation model with fractional temporal evolution. This can address and mitigate the
Internet bottleneck effect. Additionally, the soliton perturbation theory, as well as the
establishment of the quasi-particle theory in order to suppress the intra-channel collision of
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optical solitons, is imperative. Subsequently, the application of the semi-inverse variational
principle to recover the analytical soliton solutions to the perturbed version of the
concatenation model, with arbitrary intensity, is also on the table. These are just the tip of
the iceberg. The results will be recovered and reported with time once they are aligned with
the pre-existing ones [1-15].
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AHomayisn. Y cmammi eukopucmosyemuvcsi aHaaiz cumempii JlIi das immezpayii eugueHoi
Modesi koHkameHayii i3 3akoHoM Keppa asmogazoeoi aemomodyasyii. Hasedene 3s8uuaiine
dugpepenyianbHe pigHAHHA IHMez2pyemuvcss 3 donoMo20l0 080X nidxodis: po3wupeHozo tanh-
Memody 2inep60oiuH020 maHeeHcy 1 y3azanabHeHo2o hidxody AphHyca. Lle daso0 memuHi ma
CUH2YAAPHI CONIMOHU 0415 Model.

Katwouoesi cioea: conimonu, memod 2inep6oa1iuHo20 maHaeHcy, memod ApHyca
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