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1. Introduction 
The concatenation model was first proposed exactly a decade ago by conjoining three of the 
well–known preexisting equations from nonlinear optics. They are the nonlinear 
Schrodinger’s equation (NLSE), the Lakshmanan–Porsezian–Daniel (LPD) model, and the 
Sasa–Satsuma equation (SSE) [1, 2]. Recently, this model has gained enormous popularity 
and has its presence across a wide range of journals. Several features of this model have been 
studied. These include the numerical analysis of the model, Painleve analysis, application of 
the method of undetermined coefficients, quiescent solitons, bifurcation analysis, utilization 
of Kudryashov’s approach, trial equation approach, solitons in magneto-optic waveguides, 
application to internet traffic control and several many other features [3–10]. Very recently, 
the model has been studied with differential group delay and the soliton solution from such a 
model has also been recovered. Thus, a wide range of features of this model and a plethora of 
applications to various optoelectronic devices has been uncovered.  
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The current paper will cover a new ground that has not been featured in the past. The 
powerful method of Lie symmetry will be implemented to address the model. This approach will 
first reduce the governing partial differential equation to a pair of ordinary differential equations 
(ODEs), just as the method of traveling wave hypothesis does. The difference is that Lie symmetry 
is a fancy approach while the traveling wave hypothesis is a fairly simple and straightforward 
approach. These ODEs are next going to be integrated using two approaches, namely the 
extended tanh method and the generalized Arnous’ scheme. The details are jotted in the rest of 
the paper after a succinct introduction to the governing model. 

2. Lie symmetry analysis 
The concatenation model is structured as [1, 2]  
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4 2 2 *6 2 7 8 9

| | [ ( ) | |
| | ] 0, .= 1
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 (1) 

Eq. (1) is the dimensionless structure of the model that is considered with the Kerr law of 
nonlinearity. The first term is the linear temporal evolution while a is the coefficient of 
chromatic dispersion, b and 6  are the coefficients of self-phase modulation (SPM) that 

stems from Kerr's law of nonlinear refractive index change. Next 1  and 7  are the 

coefficients of third–order dispersion and fourth–order dispersion, respectively. Finally, the 
coefficients 2 , 3 , 8  and 9  imply the additional nonlinear effects, while the coefficients 

4  and 5  give the nonlinear dispersive effects. The independent variables are x and t 

respectively and represent the spatial and temporal co-ordinates while the dependent 
variable q(x,t) accounts for the wave amplitude.   

The three individual models that Eq. (1) comprises of are embedded in it. The first three 
terms are from NLSE. The coefficient of c1 is from the LPD model while the coefficient of c2 is 
due to SSE. Thus, Eq. (1) is the desired and the newly proposed concatenation model with 
the Kerr law of SPM. This model (1) will be first addressed by Lie symmetry analysis and 
subsequently by the two aforesaid integration schemes that will reveal dark and singular 
solitons and their combination thereof.  

In this section, we will apply the Lie classical method on Eq. (1) in order to obtain the 
infinitesimals. Now, we will assume  

     , , , ,q x t u x t iv x t   (2) 

where u  and v  are real-valued functions. Eq. (2) transform Eq. (1) into real and imaginary 
portions as 
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The basic methodology for obtaining the infinitesimal generators of the system (3), which is 
derived from Eq. (1) is presented in this section. Consider a one-parameter    Lie group of 

point transformations, which leave system (3) invariant, as follows:  
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    (4) 

where  ,  ,   and   are known as infinitesimal symmetries relying on x , t , u  and  . The 
infinitesimal generator V , also known as a vector field, associated with the preceding 
transformation is given by  

.V
x t u

   


      
   

     (5) 

If symmetries of system (3) are generated by infinitesimal generator V , then it must satisfy 
the invariance condition:  

   4 Δ 0,Pr V       (6) 

whenever Δ 0  in system (3). Here,  4Pr  represents the fourth-order prolongation, which 
can be written as  

 4

,
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  (7) 

where t , x , xx , xxx , xxxx , t , x , xx , xxx  and xxxx  are known as extended 

infinitesimals (for more details, see [1, 2]). By applying the prolongation formula (7) to the 
system (3), a system of determining equations has been obtained. The following 
infinitesimals were obtained after solving those determining equations:  

1 2 3 3,   ,  ,   .c c c v c u            (8) 

Thus, the Lie algebra of symmetries of the system (3) can be spanned by the following 
vector fields: 

1 2 3,    ,    .V V V v u
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    (9) 

Using the similarity variables, now we reduce the governing model (1) into non-linear ordinary 

differential equations. To do so, we must solve the characteristic equation  

       
,

, , , , , , , , , , , ,
dx dt du dv
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     (10) 

where  ,  ,   and   are given by Eq. (8). On solving Lagrange’s (10), by taking the generator 

3 1 2V V V   , where   and   are arbitrary real numbers, we have the following similarity 
variables:  

        
        

,    , cos , ,

, sin , ,    , .

h x t u x t Q x t

x t Q x t x t kx t

   

     

  

    
  (11) 

where , ,k    are the wave number, the wave frequency, and the phase constant, respectively.  
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Hence, from Eq. (2), we derive  
      .,  i kx tq x t Q e          (12) 

Using Eq. (11) in Eq. (1), we obtain the real part as  
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and the imaginary part as  
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following constraints  
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one can obtain the velocity of the soliton from Eq. (14) as  
3 21 1 2 72 4 3 .v ak c k c k      (16) 

Now, Eq. (13) can be rewritten as  
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3. Extended tanh method 
In this section, we will derive the solutions of Eq. (17) by employing the extended tanh 
method [15]. The extended tanh scheme suggests the solution of Eq. (17) in the following 
form 

     
0 1
  tanh   tanh ,

n n
i jj j

i j
Q B m C m  

 

      (19) 

where iB  and jC  are arbitrary constants and at least one of them should be non-zero, m is 

the wave width. By balancing the terms ''''Q  and 5Q  from Eq. (17), we have 1n  . Therefore, 
solution of Eq. (17), takes the form  

     
1

0 1tanh .
tanh

CQ B B m
m

 


       (20) 

Now substituting Eq. (20) into Eq. (17) and by equating terms of the same power of tanh function 

to zero, we get the following system of equations:  
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After solving system Eq. (21), we have four sets of solutions: 
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Set-1.  
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(22)

Inserting Eq. (22) together with Eq. (11) into Eq. (2), we get a singular soliton solution 
       1, coth e .i kx tq x t C mh x t           (23) 

Set-2.  
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(24)

Inserting Eq. (24) together with Eq. (11) into Eq. (2), we get a dark soliton solution 
      1, tanh e .i kx tq x t B mh x t          (25) 

Fig. 1 showcases several plots illustrating the dark soliton solution (25) within the context of 
model Eq. (1), and the specific parameter values employed are as follows: 1m  , 1h  , 

1a  , 1k  , 1 1c  , 2 1c  , 1 1  , 2 1  , 3 1  , 4 1  , 6 1  , 7 1  , 8 1  , 9 1  , 
1  , and 1b  . 

(a) (b) 

(c) 

 
 

 
 
 

 
Fig. 1. Profile of a dark soliton solution given 
by Eq. (25): (a) surface plot, (b) contour plot 
(c) 2D plot. 
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Set-3.    
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Inserting Eq. (26) together with Eq. (11) into Eq. (2), we get  

         1 1, tanh coth e .i kx tq x t B mh x t C mh x t             (27) 

For 1 0B   and 1 0C  , Eq. (27) reduces to a dark soliton solution, while and for 1 0B   and 

1 0C  , Eq. (27) reduces to a singular soliton solution. Therefore (27) is the structure of a 

dark-singular straddled soliton 

Set-4. 
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           (28) 

Inserting Eq. (28) together with Eq. (11) into Eq. (2), we get a dark-singular straddeld solution  

         1, tanh coth .ei kx tq x t C mh x t mh x t              (29) 

4. Applications of generalized Arnous’ method 
In this section, we drive the solutions of Eq. (1) by performing a generalized Arnous’ method 
[14]. First, we have to derive the positive integer N , by balancing the terms ''''Q  and 5Q , we 
have 1N  . Consequently, one gets  

   
 

1
0

2 '
,Q

 
 






       (30) 

as a solution of Eq. (17). Here, the constants 0 , 1 , and 2  are determined later and the 
function     satisfies the relation 
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Eq. (31) holds the following solution  
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        (33) 

where k is the wavevector, and   are arbitrary parameters. Substituting Eq. (30) into 

Eq. (17), we get an over-determined system of algebraic equations; by collecting all terms of 
the same power and equating them to zero, we get the following system of equations 
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Solving the above system by using the software Maple, we get the result as follows 

Set-1. 
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Therefore, by putting Eq. (35) along with Eq. (30) into Eq. (11) and Eq. (12), we have the 
solution of the governing model defined by Eq. (1) as  
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 (36) 

where  h x t   , 0a  , 0 , 1A , 4A , 3A  and 2  are arbitrary constants. If 

  224 lnk a  , from (36), we have a dark soliton solution as follows  

         0 2, ln tanh  ln .i kx tq x t a a e              (37) 

If   224 lnk a   , the solution (36) reduces to a singular soliton solution as follows  

         0 2, ln coth  ln .i kx tq x t a a e              (38) 
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 (39)

Therefore, by putting Eq. (39) along with Eq. (30) into Eq. (11) and Eq. (12), we have the 
solution of the governing model defined by Eq. (1) as  
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  (40) 

where  h x t   ,  0a  , 0  , 0  and 2  are arbitrary constants. If   224 lnk a  , 

from (40), we have a dark soliton solution as follows  

           0 2, ln  ln 1 tanh  ln .i kx tq x t a a a e               (41) 

If   224 lnk a   , the solution (40) reduces to a sigular soliton solution as follows 
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           0 2, ln  ln 1 coth  ln .i kx tq x t a a a e               (42) 

Set-3. 
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Therefore, by putting Eq. (43) along with Eq. (30) into Eq. (11) and Eq. (12), we have the 
solution of the governing model (1) as  
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where  h x t   , 0a  , 0 ,   and 2  are arbitrary constants. If   224 lnk a  , the 

solution (44) give us a dark soliton solution as follows 

         0 2, ln tanh  ln .i kx tq x t a a e             (45) 

If   224 lnk a   , the solution (44) reduces to a singular soliton solution given as 

         0 2, ln coth  ln .i kx tq x t a a e             (46) 

5. Conclusions  
The current paper studied the concatenation model with the aid of Lie symmetry analysis. 
Thereafter, the reduced ODE was integrated using a couple of approaches. These are the exten-
ded tanh method and Arnous’ algorithm. These algorithms revealed dark and singular soliton 
solutions to the model. Unfortunately, the two adopted approaches failed to recover bright 
soliton solutions to the model that are the primary information carrier bits across intercon-
tinental distances. Nevertheless, the Lie symmetry is an advanced mathematical technique to 
reduce the given model to the necessary ODE, which can be addressed using additional 
integration methodologies such as the enhanced Kudryashov’s approach and many others. 

There are wide open possibilities that lay ahead to handle this equation from different 
perspectives. One of the very many things that need to be covered is the study of the 
concatenation model with fractional temporal evolution. This can address and mitigate the 
Internet bottleneck effect. Additionally, the soliton perturbation theory, as well as the 
establishment of the quasi-particle theory in order to suppress the intra-channel collision of 
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optical solitons, is imperative. Subsequently, the application of the semi-inverse variational 
principle to recover the analytical soliton solutions to the perturbed version of the 
concatenation model, with arbitrary intensity, is also on the table. These are just the tip of 
the iceberg. The results will be recovered and reported with time once they are aligned with 
the pre-existing ones [1-15]. 
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Анотація. У статті використовується аналіз симетрії Лі для інтеграції вивченої 
моделі конкатенації із законом Керра автофазової автомодуляції. Наведене звичайне 
диференціальне рівняння інтегрується з допомогою двох підходів: розширеного tanh- 
методу гіперболічного тангенсу і узагальненого підходу Арнуса. Це дало темні та 
сингулярні солітони для моделі. 

Ключові слова: солітони, метод гіперболічного тангенсу, метод Арнуса 


