Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 1


ISSN 1609-1833 (Print)

QUESCENT OPTICAL SOLITONS FOR THE DISPERSIVE CONCATENATION MODEL WITH KERR LAW NONLINEARITY HAVING NONLINEAR CHROMATIC DISPERSION

1Elsherbeny Ahmed M., 2Arnous Ahmed H., 3Jawad Anwar Jafar Mohamad, 4,5,6,7Biswas Anjan, 8,9Yildirim Yakup, 10Moraru Luminita and 5Alshomrani Ali Saleh

1Department of Physics and Mathematics Engineering, Faculty of Engineering, Ain Shams University-11517, Cairo, Egypt
2Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El-ShoroukAcademy, Cairo, Egypt
3Department of Computer Technical Engineering, Al Rafidain University College, 10064 Baghdad, Iraq
4Department of Mathematics and Physics, Grambling State University, Grambling, LA 71245-2715, USA
5Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
6Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania
7Department of Mathematics and Applied Mathematics, Sefako Makgatho Health SciencesUniversity, Medunsa-0204, South Africa
8Department of Computer Engineering, Biruni University, Istanbul-34010, Turkey
9Department of Mathematics, Near East University, 99138 Nicosia, Cyprus.
10Faculty of Sciences and Environment, Department of Chemistry, Physics and Environment, Dunarea de Jos University of Galati, 47 Domneasca Street, 800008, Romania

ABSTRACT

The current work obtains the quiescent optical solitons to the dispersive concatenation model that is considered with the Kerr law of nonlinear refractive index and nonlinear chromatic dispersion. Two integration schemes reveal this full spectrum of quiescent optical solitons. Their existence criteria are also presented in the work.

Keywords: quiescent optical solitons, Kudryashov scheme, Riccati equation algorithm, dispersive concatenation model

UDC: 535.32

    1. Ankiewicz, A. & Akhmediev, N. (2014). Higher-order integrable evolution equation and its soliton solutions. Physics Letters A. 378, 358-361. doi:10.1016/j.physleta.2013.11.031
    2. Ankiewicz ,A., Wang, Y., Wabnitz, S. & Akhmediev, N. (2014). Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Physical Review E, 89, 012907. doi:10.1103/PhysRevE.89.012907
    3. Chowdury, A., Kedziora, D. J., Ankiewicz, A. & Akhmediev, N. (2014). Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Physical Review E, 91, 032922. doi:10.1103/PhysRevE.90.032922
    4. Chowdury A., Kedziora D. J., Ankiewicz A. & Akhmediev N. (2015). Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Physical Review E, 91, 032928. doi:10.1103/PhysRevE.91.032928
    5. Chowdury, A., Kedziora, D. J., Ankiewicz, A. & Akhmediev, N. (2015). Breather solutions of the integrable quintic nonlinear Schrödinger equation and their interactions. Physical Review E, 91, 022919. doi:10.1103/PhysRevE.91.022919
    6. Arnous, A. H., Mirzazadeh, M., Biswas, A., Yildirim, Y., Triki, H. & Asiri, A. A wide spectrum of optical solitons for the dispersive concatenation model. Journal of Optics, (will be published).
    7. Arnous, A. H., Biswas, A., Yildirim, Y., Moraru, L., Aphane, M., Moshokoa, S. P. & Alshehri, H. M. (2023). Quiescent optical solitons with Kuydryashov's generalized quintuple-power and nonlocal nonlinearity having nonlinear chromatic dispersion: generalized temporal evolution. Ukrainian Journal of Physical Optics, 24(2), 105-113. doi:10.3116/16091833/24/2/105/2023
    8. Biswas, A., Vega-Guzman, J. M., Yildirim, Y., Moshokoa, S. P., Aphane, M. & Alghamdi, A. A. (2023). Optical solitons for the concatenation model with power-law nonlinearity: undetermined coefficients. Ukrainian Journal of Physical Optics, 24(3), 185-192. doi:10.3116/16091833/24/3/185/2023
    9. Gonzalez-Gaxiola, O., Biswas, A., Ruiz de Chavez, J.& Asiri, A. (2023). Bright and dark optical solitons for the concatenation model by Laplace-Adomian decomposition scheme. Ukrainian Journal of Physical Optics, 24(3), 222-234. doi:10.3116/16091833/24/3/222/2023
    10. Shohib, R., Alngar, M. E. M., Biswas, A., Yildirim, Y., Triki, H., Moraru, L., Iticescu, C., Georgescu, P. L. & Asiri, A. (2023). Optical solitons in magneto-optic waveguides for the concatenation model. Ukrainian Journal of Physical Optics, 24(3), 248-261. doi:10.3116/16091833/24/3/248/2023

    У поточній роботі отримано стаціонарні оптичні солітони для дисперсійної моделі конкатенації, яка розглядається з врахуванням закону Керра для нелінійного показника заломлення і нелінійної хроматичної дисперсії. З використанням двох методів інтегрування виявлено повний спектр стаціонарних оптичних солітонів. У роботі також наведені критерії їхнього існування.

    Ключові слова: quiescent optical solitons, Kudryashov scheme, Riccati equation algorithm, dispersive concatenation model


© Ukrainian Journal of Physical Optics ©