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1. Introduction
The concept of the concatenation model was conceived a decade ago in 2014, by Ankiewicz

et al. This is obtained through the conjunction of the well-known models that describe the
propagation of solitons through optical fibers. They are the nonlinear Schrédinger’s equation
(NLSE), the Lakshmanan-Porsezian-Daniel (LPD) model, and the Sasa-Satsuma equation [1,
2]. Thereafter, a dispersive version of this concatenation model was proposed and reported
during 2014 and 2015 [3-5]. This form of the concatenation model is obtained by conjoining
the Schrodinger-Hirota equation (SHE), the LPD model, and the dispersive NLSE with fifth-
order dispersion in it. A plethora of results have been recently reported for the
concatenation model, which ranges from retrieval of optical solitons and conservation laws,
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numerical studies of solitons with the Laplace-Adomian decomposition scheme, application
of the model to magneto-optic waveguides, and many more [6-10]. The current paper will
focus on retrieving the quiescent optical solitons for the dispersive concatenation model that
is considered with nonlinear chromatic dispersion (CD) and having Kerr law of self-phase
modulation (SPM). The theory of quiescent optical solitons is becoming increasingly
important due to their potential impact on soliton propagation dynamics [7]. These solitons,
which remain stationary rather than propagating as expected, are primarily caused by the
nonlinear effects of chromatic dispersion. Researchers have studied this phenomenon to
understand why solitons stall in optical fibers, a problem that has significant implications for
the telecommunications industry. Previous investigations sought to uncover the mechanisms
behind soliton stalling and develop solutions to mitigate this undesirable feature. This
background provides essential context for our current work, where we aim to contribute to
addressing the challenges associated with quiescent optical solitons.

Two integration approaches are employed in order to retrieve these quiescent solitons
to the model. They are the newly enhanced Kyudryashov’s scheme and the projective
Riccati’s equation algorithm. These two approaches collectively reveal a full spectrum of
optical solitons that are enumerated in the paper. The paper first revisits the dispersive
concatenation model that is with nonlinear CD and Kerr law of SPM. The integration
algorithms are recapitulated in a succinct manner and subsequently implemented to recover
the quiescent solitons. The details are exhibited in the rest of the paper after revisiting the
governing model.

2. An overview over the integration algorithms
The dimensionless form of the dispersive concatenation model is given as:

iq, + a(|q|" q)xx +blgf q—i6, [aquxx +o|af’ qx}
2 4 2 * *
+83] 0 + 04lal” Qe+ 03lal" -+ 0l a + 0,02 + opina? | )

. 2 4 *
_153 |:69qxxxxx +07q9 |q| Qyxx T 011 |q| Ay 012999 xx
+0130" A + 0149001 + O 159343 | =0.

In Eq. (1), the dependent variable g(x,t) is the wave amplitude and is a complex-valued

function. The independent variables are x and t that account for the spatial and temporal
variables respectively. Then a and b are the coefficients of nonlinear CD and Kerr law of

SPM, respectively, while i =+/—1 . The first term accounts for the linear temporal evolution of
the pulses, and the first five terms of (1) formulate the SHE, while the coefficient of &, is

from the LPD model, and, finally, the coefficient of &; is from the Kerr law of SPM.
Lastly, 6;,07...015 are the coefficients of nonlinear dispersion effects.
Assume the solution structure of Eq. (1) is:

q(x,t)=U(Kx)ei(o+6,), 2)

Here, U(Kx) represents the amplitude component of the soliton solution where K is the

wave width, while © represents the frequency, and 6, is the phase constant. After

substituting of Eq. (2) into Eq. (1) and then decomposing it into real and imaginary parts, one
obtains:
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aK2(n+1)UnW"+aK2n(n+1)UnU "2+ 5,K 403U (DU + 6,K2 (04 + o )U3U "

(3)
+6,K2(06 + 07 )U2U "2+ (5,k204 +1)U4 + 5,05U(£)6 —wlU2 =0,
and
~83K50qUU(5) - 5;K30,,U3UB3) — 5,K30,UUB) — 53K30,UU '3 @
From the imaginary part, we get the parametric restrictions
0, =011 =015=01 =019 =09 =0, (5)
and
012 +013+0714 =0. (6)
Provided that n=2 for integrability. Then Eq. (1) reduces to
. 2 2
iq, + a(lql q) +b|q|"q
XX
2 4 2 X x
+83] a0 + 040l 0o+ 05[al" -+ g 0, P 0+ 07030” + oadina? | 7
~i03[01209, Q5 + 013 Axx 014995 | = 0,
and Eq. (3) reaches
K2(3a+68,(0y +0g) U2 "+ K2(6a+5,(0g +07) \UU 2+ 5,K 4o3U(4) (&)
+(6,k204 +1)U3 +5,05U5 — U =0,
which can be simplified as
dsU2U"+d,UU 2+ d3U5 + d,U3 + dU + K2U(4) =0, (9)
where
1 PR > » U3 ="
o6,k204 o,k205 k2o,
(10)
6a+6,(og+07) 3a+6,(04+0g)
d4 = ) ds = .
6,03 5,03
Consider a governing model
F (U, U, Uy Uy Uy ) =0, (11)

where u=u(x,t) denotes a wave profile, while ¢ and x depict the time and space variables

in sequence.
The relations

u(x,t)=U(&), &=k(x-ut), (12)
condense Eq. (9) to

P(U,~koU',kU",k2U",...) =0, (13)
where k is the wave width, £ is the wave variable, and v is the wave velocity.

2.1. The enhanced Kudryashov’s method
Step-1: Assuming the solution of Eq. (13) is as follows:

N
U(E)=20+ 22 QI (E)RI(E) (14)
I=1i+j=I
where the constants ﬂo,lij(i,j:O,l,...,N) will be computed later, the functions Q(¢£) and

R (5) satisfy the following ordinary differential equations (ODEs):
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R()? =R(&)? - xR(S)*, (15)
and
Q'(&)=nQ(E>2-Q(&). (16)
Step-2: From Egs (15) and (16), R(£) and Q(&) can be written in the form:
_ 4a
R(é:)_ 426 + yet’ 17
and
1
Q(g)_nwei' (18)

where f,y,n and u are constant arbitrary parameters.

Step-3: The balance number N can be determined in Eq. (14) by balancing between the
nonlinear term and the highest order derivative term in Eq. (13).

Step-4: Without disregarding Eqgs. (15) and (16), substituting by Eq.(14) into Eq.(13),
results in a polynomial of Q(&),R(&) and R'(£). A system of algebraic equations that are

overdetermined is created if all terms with the same powers are gathered and equalized to
zero. We can obtain the precise solutions to Eq. (11) if we solve the system using Maple or
Mathematica software.

2.2. New projective Riccati’s equation approach

The central proceedings of the new projective Riccati equations method are as follows.
Step-1: Assume Eq. (13) has the formal solution

N
U(&)=ag+ D Fi-t (&) (aF (§)+46()) » (19)
i=1
where F(&) and G(&) satisfy the following ODEs:
F'(§)=-F(£)G(§), 6'(&)=1-G2(§)-rF (&), (20)
with
G =1-2rF () +R(r)F(E. 21)

Here r is constant and N is a positive integer derived from the balancing principle in
Eq. (13), where og,a; and g(i=0,1,..,N) are constants.

Step-2: The solutions of Eq. (20) are listed as follows:

Case-1: R(r)=0

F(é):z—lrsech{g}, and G(§)ztanh[§}, (22)
or
F(é):—zicsch{g}, and G(é):coth{g} (23)
r
Case-2: R(r):g—grz

F( )_l 5sech[&] and G(£)- tanh[£]

_rSSech[é]il' _1i55ech[§]' (24)
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Case-3: R(r)= %rz

13 sech[&] B 2
Fe)= r3sech[£]£2’ and G(£)= 2 coth[¢]+3 esch[&] (25)
Case-4: R(r)=r2+1
__cschle] __ cothle]
F(é)_rcsch[§]+1' and G(é)_rcsch[§]+1' (26)
Case-5: R(r)=r2-1
B 4 sech[&] ~ 5tanh[&]+3
Fe)= 3tanh[&]+4r sech[¢]+5 and G(¢)= 3 tanh[&]+4r sech[£]+5’ (27)
or
__sech[¢] _ tanh[f]
)_rsech[§]+1' and G(é)_rsech[§]+1' (28)

Step-3: Inserting Eq. (19) along with Egs. (20) and (21) into Eq. (13), we get a polynomial of
F(&) and G(&) which equals to zero. The obtained coefficients of this polynomial give the
needed parameters in Eqs. (12) and (19).

3. Solitons for the governing model
3.1. The new enhanced Kudryashov’s method

Balancing U5 with U(4) in Eq. (9) gives N =1, accordingly the solution takes the form:

U(&) =2+ 201R(£)+ 40Q(S)- (29
Putting Eq. (29) into Eq. (9) along with Egs. (15) and (16), leads to the following system of
algebraic equations:

dym?Afy + 2dsn?Af, + dsAfy +24m4 2 K2 =0, (30)
dyn?2g1 A%y +4dsn?Ag1Afy +5d3201 A =0, (31)
dyn22g gy + 4dsn?Ag Aty — 2dmATy — 3dsnAfy +5ds Aol — 60n3410K2 =0, (32)
2512281 710 +10d348; Afy =0, (33)
4dsn?AgAg110 = 2d4m201 Ay — 6ds g1 Ay + 20d320701 A7 =0, (34)
2d4m2012£0 =0, (35)
2d5n22¢ 200 — 2dyn20 Ay — 6dsn oAty +10d3A§ 2%, (36)
+dy 230 + dyAfy + dsAfy +50m24; K2 =0,
103251 Afy — 2dsAg1 Ao x =0, (37)
30d30481 Aty —3dsnA§1 410 =0, (38)
2dnA§1 410 =0, (39)
=6ds5120A01 20 +30d3A§ A1 Afy + 3dyA01 Afy + dadgr Afy +3ds g1 Afy =0, (40)
2d 2o 91710 — 2d4201AF0 =0, (41)
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=3ds110A¢ +10d3A£0A8 +3d,AfgAg +dyAfo g + 2d5Afy Ao — 15171 K2 =0, (42)
~dy2q0AG1 % — 4dsA0Ag1 2 + 53210461 =0, (43)
20d320/81 410 — 4d529201 7102 =0, (44)
303§ M0Ad1 +3daA 081 +dady0/y +3dsAi0Ag, =0, (45)
=2dy 71249 =0, (46)
20329121043 + 605291710/ + 4dsAg1 2107 =0, (47)
—2d4 20291410 =0, (48)
Sd3Ay 0/ +3dy 21048 +dsAipAG +d1A1g + A10K % =0, (49)
~dy 281 — 2523, x +d3/gy +2420,K2 % =, (50)
~dyAgA§1 x —AdsAoAgy x + 5d3lgAd =0, (51)
—2d5/§ 201 % +10d3A§ 25 +dy25; +dy gy +dsAgy — 2040, K2y =0, (52)
10d3A§1 A3 +3dyA81 A +dyAfy Ag + 205751 29 =0 (53)
Sd3Ag1Ad +3dy201AF +dsAg1Ag +diAgr + Ag1K? =0, (54)
d3Ag +dyAg +d1 29 = 0. (55)

Here d;..ds are given by Eq. (10).
Solving these equations together yields the following results:

Result-1:
d,(2d,—-d, —d
K=2 1( 2 4 5),/10=i2 5dl ,201:0,
8d, +d, —4ds —-8d, —d, +4ds
5d
A0 0 e —d, v ad, (56)
o= 96d22 +4d,d, —16dsd, —d3 - 16d§ +8d,ds '
3 400d,

Plugging the obtained parameters in Eq. (56) with Egs. (17) and (18) into Eq. (29), as a

consequence, we get:
g(xt)=22 >y 1- 2 eilot+0),  (57)
~8d, —d, +4d- ) \/_dl(Zdz—d4—ds)x

pe V- 8dyrd,—ad, 4 p
Setting 17 =+u, we get dark and singular solitons with d; (2d, —d, —ds)(8d, +d, —4d5)<0
and d; (-8d,—d, +4ds5)>0,

d{(2d,—-d, —d .
q(x,t)==2 >y tanh 1(2d, —d, S)X ei(ot+0,)  (58)
—8d, —d, +4d; 8d, +d, —4ds
and
2d,—-d, - )
q(x,t)=+2 >d, coth d, (2d, ~ dS)x ei(@t+6,),  (59)
—8d, —d, +4ds 8d, +d, — 4dy
respectively.
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Result-2:

5d,y
K=+J=d;, =0, A, =%2 /——1,
#0=0, o1 dy+d, +ds

6d3 +7d,d, + 2dsd, + dj — 4dZ —3d,4ds
A0=0, d3 = '
100d,
Plugging the obtained parameters in Eq. (60) with Egs. (17) and (18) into Eq. (29), as a
consequence, we get:

sgp |- hL
q(x.t) dy *dy +ds ei(ot+0,), (61)

t)=
482e\-d,x 4 ye—-dx

(60)

Setting y =442, we get bright soliton with d; <0 and d, +d, +d5 >0,

[ 54, .
q(X,t)ziz —msech[ —dlx]el(a)tJrgO), (62)

and singular soliton with d; <0 and d, +d, +d5 <0,

[ 54, .
q(X,t)=+2 mcsch[ —d1X:|€1(a)t+60). (63)

3.2. New projective equation method
Balancing U5 with U(4) in Eq. (9) gives N =1, accordingly the solution takes the form:
U($)=ag+arF(&)+aG($). (64)
Plugging Eq. (64) together with Eqgs. (20) and (21) into Eqg. (9), we get a system of algebraic
equations:
Safdso +10afds08R (1) +3add,0R(1) + 6afdsoR(T) + d30PR(7)? (65)
+d,03R(1)? + 2ds 0P R(7)2 + 24K 20, R(7)? =0,
—20afd;t 0f — 4add,r o) —Tafdst o + 200g03dz00 + 200011 d308R(T)
+20004d40,R () + 8y ds oy R(1) — 4dst PR (1) — 2d,47 08R (1) (66)
—5dst oPR(7) - 36K 2r0R(7) =0,
400011 d57 07 — 200904 d,4T 0y — 8oty dst o) + 10ad;5 08 + 30agaids o +3aid, 0
+20¢ds 0 +1003d308R (7 )+ 208ds o R(7 ) + 2d500R (7 ) + dyoPR (1) + 2d5.08R (1) (67)
+4d31200 +d 1208 + 2d51203 +8K20,R(7) + 6K 2120, =0,

—2003ds7 0f — addst o) + 200y04d5.08 + 2003 ds 0 + 6ag0dy 0

(68)
+2a0a,ds 0 —4dsT 0 — 2dyT 0 — dst 0f — K270, =0,
10ad;07 +5addso +3addyo, +ds0P +dy0f +dyo =0, (69)
afds +add,R(7) + 2a3dsR (1) + 10a3d508R (7 ) + 5a1d5.0{R(7 )2 (70)

+3011d407R(7)? + 601 d5 07 R(7)? + 2404, K2R(7)2 =0,

—203d,t —3a3dst - 2003dst of + Sorgatds + agadd,R(1) + 4ogofdsR(7)
+300gafd302R (1) — 2004 d37 0{*R (1) — 8ayd 47 02R (1) — 1701d5t 07R(7) (71)
+5a0d3 01 R(7 )2 + ayd, 07 R(T)? + 40tyd5 07 R(r)2 — 600 K2TR (1) =0,
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—2apatd,T —60yafdst + 200d572 0 +50,d, 7207 +100dsT20f
—60ag0afdst of +1003d50f +10adaids + ajd, + add, + ads
+20801dsR (1) - 200d57 o R(7) + 1001 d50R(7) — 200d,t 0fR(7)  (72)
—100ydst ofR (7 ) + 300§, d307R (7 )+ 3a1dy 08 R(7)

+201d,,02R(7) + 7a1d508R(7) + 300, K212 + 2001, K2R(7) =0,

—3aga,dst + 200ydsr 201 + agd 41207 + 4otydsT20f — 200 d5T 0

—600ga,dst 0f — 6011 dyT 0f — 2017 07 — Ty dsT 0 +30agafd;of

+10adatd; +3agaid, + ayaid, + 20g0fds + 10agdz 01 R(7) (73)
+10a3d;07R(7) + 3ayd, 08 R (7) + 4ayds 08 R (1) — 1504 K 27 =0,
—2003dst of —2004d5T 0t — 601yd,T 0F — 2014d5T OF
+300a8ds 0t +501d30 + 304 dy 0 + oy ds0f (74)
+5oafds +3,a8d, + ayadds + ayd; + a4 K2 =0,
1003ds0f +Satgdzoft +30dyof + agds + add, + agd; =0. (75)
Solving these equations together yields the following results:
Case-1: R(7)=0
2d, —d, —
09 =0, a1 =0, o =42 m, K:Z\/ d18(dzdid4dj4;55) )
g, - 9608+ tdydy ~16dsdy —} ~1642 +8d,d5 (76)
400d,

Plugging the obtained parameters in Eq. (76) with Egs. (22) and (23) into Eq. (64), as a
consequence, we get dark and singular solitons with d, (2d, —d, —ds)(8d, +d, —4ds) <0 and

dy (-8, —d, +4dg) >0,

d,(2d,-d, —d .
q(x,t)==2 >y tanh \/ 1(2d; ~d4 5)x el(ot+6,),  (77)
-8d, —d, +4d; 8d, +d, —4ds
and
di(2d,-d,—d )
q(x,t)==2 | >d; coth \/ 1(2d, —d, 5)x ei(ot+0,)  (78)
—8d, —d, +4ds 8d, +d, —4ds
respectively.
Case-2: R(r)zﬁﬂ
25
5(—8d, —d, +4ds) -8d, —d, +4ds

(79)

K= d, (2dy —d, —ds) do o 96d3 + 4d,d, —16dsd, —d} —16dZ + 8d,d; .
8d,+d,—4ds > 400d,

Plugging the obtained parameters in Eq. (79) with Eq. (24) into Eq. (64), as a consequence,

we get straddled bright-dark solitons with d,(2d,-d,—ds)(8d,+d,—4d5)<0 and

d, (-8d,—d, +4ds)>0,

Ukr. J. Phys. Opt. 2024, Volume 25, Issue 1 01061



Elsherbeny Ahmed M. et al

q(x,t)zJ_rz 5y
—8d, —d, + 4ds
d,(2d,—d, —d d,(2d,—d, —d
2+/6sech| 2 —M){ +tanh| 2 —Mx
8d, +d, —4d; 8d,+d, —4ds (80)
X
Ssech| 2 _M){ +1
8d, +d, - 4ds
xel(wt+6,).
Case-3: R(r):gﬂ
=0, a; :imf —_—, o =10 | ————,
3 \-8d,—d,+4ds ~8d, —d, +4ds -

’

8d,+d, —4d; ' ° 400d,
Plugging the obtained parameters in Eq. (81) with Eq. (25) into Eq. (64), as a consequence,
we get straddled bright-singular solitons with d,(2d,-d,—ds)(8d,+d, —4d5)<0 and

Kzz\/_dl(Zdz—d4—d5) .  96d3 +4dyd; ~16dsd, — df —16d2 +8d,ds

d;(-8d,—d, +4ds)>0,

a(xt)== 100d, ‘ 8d, +d, —4ds
") —8d, —d, + 4d 0
\ —8dy —d, + 4ds 3%{2 Jd(z(fdd)}z

8d, +d, —4ds (82)
+ 2 }ei(wt+90).
d,(2d,—d, —d d, (2d,—d, —d
2coth| 2 —Mx +3csch| 2 —Mx
8, +d, —4ds 8d, +d, —4ds
Case-4: R(t)=12+1
5d; (r2+1
aOZO, a1=i2 &’ glz_ _—_—
~8d, —d, +4ds ~8d, —d, + 4ds @)
o | G1(2dy—dy—d5) . 96d3 +4d,d, ~16dsd, —df ~16d2 +8d,ds
8d,+d,—4ds '’ 400d, '

Plugging the obtained parameters in Eq. (83) with Eq. (26) into Eq. (64), as a consequence,
we get straddled singular-singular solitons with d,(2d,-d,—ds)(8d,+d, —4ds)<0 and

d;(-8d,—d, +4ds)>0,

q(xt)=22 | — 0
—8d, —d, + 4ds
“ 8d, + d, — 4dy 8d, + d, — 4d; .
X
TCSCh 2 _Mx +1
8d, +d, — 4d;
Xei(wt+90).
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Case-5: R(r)=12-1
_ 2
sy [ s
8d, +d, — 4d “8d, —d, + 4d;
K=2\/ 4y (2d,—d,—d5) | _ 963 +4dyd, ~16dsd, —df 162 + 8,y

Oy = 0, o= +2
(85)

’

8d,+d,—4ds = ° 400d,
Plugging the obtained parameters in Eq. (85) with Egs. (27) and (28) into Eq. (64), as a
consequence, we get straddeled bright-dark solitons with
d,(2dy—d, —ds)(8d,+d, —4d5) <0 and d,(-8d,—d, +4ds) >0, respectively.
5d;
—8d, —d, +4ds

d,(2d, —d, —d d,(2d, —d, —d
4«[1’2_1 sech| 2 —M){ +5tanh| 2 —MX +3
8d, +d, - Ads 8d, +d, — 4ds )

mEC{Z Jd(mwd)}gth{z dedd)}s

8d, +d,, — 4ds 8d, +d, — 4ds

q(x,t)==%2

X

xei(wt+9(,)’
and
5d;
—8d, —d, +4dg

J72 -1 sech| 2 _Mx +tanh| 2 _Mx
8d, +d, —4ds 8d, +d, — 4ds

8d, +d, —4ds

q(x,t)==2

X

(87)

xel(ot+06,),

4. Conclusions
The paper retrieved quiescent optical solitons for the dispersive concatenation model with

Kerr's law of nonlinear refractive index change and with nonlinear CD. The two approaches
collectively revealed the full spectrum of quiescent optical solitons. The parameter
restrictions for the existence of such solitons are also indicated. The paper results are thus
promising to pursue additional avenues from the model. The model will be next studied with
the power-law of SPM. Later, it is imperative to address this model with differential group
delay. Subsequently, the model must be additionally considered with fractional temporal
evolution as opposed to linear temporal evolution. This would give an even wider
perspective to the present work. Such studies are underway, and the results of these
research activities will be sequentially reported with time.
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Anomayia. Y nomouniti pobomi ompumano cmayionapri onmuyHi CONIMOHU Oasl OUCNEPCIUHOT
Mooeni KOHKameHayii, AKa po321A0acmvcsa 3 6paxyeanHsam 3axony Keppa ona menimiiinozo
NOKA3HUKA 3GNOMIEHHA i HeNiHIUHOI XpomamuyHoi ducnepcii. 3 8UKOpUCTNAHHAM 080X Memoodi
iHmezpy6anHs GUABNIEHO NOGHUL CHEKMP CMAYIOHAPHUX ONMUYHUX CONIMONIG. Y pobomi makodic
HasedeHi kpumepii IXHbO20 ICHYBAHHSL.

Knrouosi cnosa: cmayionapui onmuuni conimonu, cxema Kyopswosa, ancopumm pieHsmHs
Pixxami, mooenv oucnepciiinoi konkamenayii
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