Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 4


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Gap solitons with cubic-quartic dispersive reflectivity and parabolic law of nonlinear refractive index

1Zayed Elsayed M. E., 2Shohib Reham M. A., 3,4,5,6Biswas Anjan, 7Yildirim Yakup, 6Aphane Maggie, 8Moshokoa Seithuti P., 9Khan Salam and 4Asiri Asim

1Mathematics Department, Faculty of Science, Zagazig University, Zagazig-44519, Egypt.
2Basic Science Department, Higher Institute of Foreign Trade & Management Sciences, New Cairo Academy, Cairo-379, Egypt.
3Department of Mathematics and Physics, Grambling State University, Grambling, LA-71245, USA.
4Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia.
5Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania.
6Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa.
7Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey.
8Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria-0008, South Africa.
9Independent Researcher, Madison, AL 35758, USA.

ABSTRACT

A full spectrum of optical gap solitons in fiber Bragg gratings with cubic–quartic dispersive reflectivity is identified. The nonlinear refractive index structure is of parabolic law type. When the modulus of ellipticity approaches unity, the limiting approach to the retrieved Jacobi’s elliptic functions reveals the soliton solutions

Keywords: solitons; Chen-Lee-Liu equation; Lie symmetry analysis

UDC: 535.32

    1. Sipe J E, Gap Solitons. In: Ostrowsky DB, Reinisch R (eds) Guided wave nonlinear optics. NATO ASI Series. Springer, Dordrecht. vol. 214, (1992). doi:10.1007/978-94-011-2536-9_17
    2. Alfimov G & Konotop V V, 2000On the existence of gap solitons. Physica D. 146: 307-327. doi:10.1016/S0167-2789(00)00138-X
    3. Pernet N, St-Jean P, Solnyshkov D D, Malpuech G, Zambon N C, Fontaine Q, Real B, Jamadi O, Lemaître A, Morassi M, Gratiet L L, Baptiste T, Harouri A, Sagnes I, Amo A, Ravets S & Bloch J, 2022. Gap solitons in a one-dimensional driven-dissipative topological lattice. Nature Phys. 18: 678-684. doi:10.1038/s41567-022-01599-8
    4. Eggleton B J, Slusher R E, de Sterke C M, Krug P A & Sipe J E, 1996. Bragg grating solitons. Phys.Rev.Lett. 76 (10): 1627--1630. doi:10.1103/PhysRevLett.76.1627
    5. Taverner D, Broderick N G R, Richardson D J, Laming R I & Ibsen M, 1998. Nonlinear self-switching and multiple gap-soliton formation in a fiber Bragg grating. Opt.Lett. 23(5): 328-330. doi:10.1364/OL.23.000328
    6. Atai J & Malomed B, 2001. Families of Bragg grating solitons in a cubic-quintic medium. Phys.Lett. A. 284: 247-252. doi:10.1016/S0375-9601(01)00314-0
    7. Atai J, Malomed B, 2005. Gap solitons in Bragg gratings with dispersive reflectivity. Phys.Lett. A. 342: 404-412. doi:10.1016/j.physleta.2005.05.081
    8. Biswas A, Vega-Guzman J, Mahmood M F, Khan S, Zhou Q, Moshokoa S P & Belic M, 2019. Solitons in optical fiber Bragg gratings with dispersive reflectivity. Optik. 182: 119-123. doi:10.1016/j.ijleo.2018.12.180
    9. Chowdhury S A M S & Atai J, 2014. Stability of Bragg grating solitons in a semilinear dual core system with dispersive reflectivity. IEEE J.Quant.Electron. 50: 458-465. doi:10.1109/JQE.2014.2318206
    10. Chowdhury S A M S & Atai J, 2016. Interaction dynamics of Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. J.Mod.Opt. 63: 2238-2245. doi:10.1080/09500340.2016.1193242
    11. Chowdhury S A M S & Atai J, 2017. Moving Bragg grating solitons in a semilinear dual-core system with dispersive reflectivity. Sci.Rep. 7: 4021. doi:10.1038/s41598-017-04179-6
    12. Dasanayaka S & Atai J, 2010. Stability of Bragg grating solitons in a cubic-quintic nonlinear medium with dispersive reflectivity. Phys.Lett. A. 375: 225-229. doi:10.1016/j.physleta.2010.10.043
    13. Islam M J & Atai J, 2017. Stability of Bragg grating solitons in a semilinear dual-core system with cubic-quintic nonlinearity. Nonlin.Dyn. 87: 1693-1701. doi:10.1007/s11071-016-3145-y
    14. Neill D R, Atai J & Malomed B A, 2008. Dynamics and collisions of moving solitons in Bragg gratings with dispersive reflectivity. J.Opt. A. 10: 085105. doi:10.1088/1464-4258/10/8/085105
    15. Kudryashov N A, 2020. Periodic and solitary waves in optical fiber Bragg gratings with dispersive reflectivity. Chin.J.Phys. 66: 401-405. doi:10.1016/j.cjph.2020.06.006

    Ідентифіковано повний спектр солітонів оптичної щілини у волоконних бреггівських ґратках з кубічно-квартичною дисперсійною відбивною здатністю при нелінійній структурі показника заломлення параболічного типу. Граничний підхід, застосований до відновлених еліптичних функцій Якобі, при прямуванні модуля еліптичності до одиниці приводить до солітонних розв’язків

    Ключові слова: солітони; решітки Брегга; кубічний–квартовий; Якобі


© Ukrainian Journal of Physical Optics ©