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1. Introduction
Gap solitons are fascinating phenomena in the field of nonlinear optics, where light waves can be

localized and trapped in the bandgap of periodic structures. Over the years, significant progress
has been made in understanding the properties and behaviors of gap solitons. In this section, we
present a literature review discussing the key findings from previous studies, which have laid the
groundwork for our investigation. Sipe [1] provided foundational work on gap solitons in his
contribution to "Guided Wave Nonlinear Optics." He explored the theoretical aspects of gap
solitons and their existence in periodic structures. This work served as a cornerstone in the
exploration of localized optical modes within bandgaps. Following Sipe's work, Alfimov and
Konotop [2] further investigated the existence of gap solitons in the context of nonlinear systems.
Their study delved into the stability and dynamical properties of these solitons in the presence of
various nonlinearity regimes, shedding light on the intricate behavior of gap solitons. Pernet et al.
[3] extended the concept of gap solitons into a one-dimensional driven-dissipative topological

04030 Ukr. J. Phys. Opt. 2023, Volume 24, Issue 4



Gap solitons

lattice. This study introduced new aspects of non-Hermitian systems and explored how dissipation
and driving forces can impact the formation and stability of gap solitons, offering valuable insights
into the effects of external driving on localized states. Eggleton et al. [4] contributed to the
understanding of gap solitons in Bragg gratings, focusing on their properties and potential
applications in fiber optic systems. This work has been instrumental in the development of
photonic devices based on gap solitons, offering possibilities for all-optical signal processing and
control. Moreover, Taverner et al. [5] examined nonlinear self-switching and multiple gap-soliton
formation in fiber Bragg gratings. Their investigation highlighted the rich dynamics and
interactions that can occur between multiple solitons within such periodic structures. While these
studies have significantly contributed to our knowledge of gap solitons, a comprehensive
understanding of their full range of behaviors and potential applications remains elusive. In this
work, we aim to address some of the outstanding questions and explore novel aspects related to
gap solitons with cubic-quartic dispersive reflectivity and the parabolic law of nonlinear refractive
index.

The study of optical solitons in optical fibers, photonic-crystal fiber (PCF), metamaterials,
optical couplers, and fibers with Bragg gratings is going on strong and steady for the past few
decades [6-15]. Lately, the concept of cubic—quartic (CQ) solitons emerged when it was realized
that the delicate balance between chromatic dispersion (CD) and self—phase modulation (SPM)
grows feeble when CD gets low. In that case, to boost up the much-needed balance, it is necessary
to compensate for the low count of CD by introducing higher-order dispersive effects. These are
third—order dispersion (30D) and fourth—order (40OD) dispersion terms. Together, these constitute
CQ dispersive effects. For fiber Bragg gratings, it is the dispersive reflectivity, which originally
stems from CD, and now comes from CQ dispersion. SPM originates from the parabolic law of
nonlinear refractive effects that dictates the structure of optical fibers. This combination of CQ
dispersive reflectivity together with the parabolic law of nonlinearity is the model of study for
fiber Bragg gratings in the current paper. The main goal is to retrieve soliton solutions to this
newly proposed model. The unified auxiliary equation approach is the integration tool that would
reveal solutions to the model in terms of Jacobi’s elliptic functions, which would, in turn, yield
soliton solutions after a limiting process when the modulus of ellipticity approaches unity. These
results are displayed after an introductory mathematical analysis.

2. Governing model
The CQ nonlinear Schrodinger’s equation (NLSE) in polarization-preserving fibers with parabolic

law in presence of perturbation terms is:

iq; +1aq o +Dq e + (Clql2 +d |q|4)q

= i{aqx +/1(|q|2 q)x +9(|q|2 )x q}, l':\/—_l,

where g= q(x, t) is the wave profile, g, gives the temporal dispersion, g, is the spatial dispersion,

)

Gror AN G correspond to the 30D and 40D, respectively, a and b are the coefficients of 30D
and 40D respectively, while the coefficients of ¢ and d account for parabolic law of nonlinear
refractive index. Here « is the coefficient of intermodal dispersion (IMD). The parameter A
controls self—steepening (SS) effect. Lastly, @ refers to the coefficient of nonlinear dispersion.

The CQ-NLSE in fiber Bragg gratings for parabolic law nonlinearity is written for the first
time in the form:
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i+ 170+ B +(c1laf 4 3 (& bl ol 1+ €T g
x 2
+iong, + Pir+o1q’r’ = {71 (laf q)x +6,(|a” ) a+plaf qx},

iy + i3+ Do+ (2 |+l ) (& T +ma o + Calal )
(3)
+ioy 1, + faq +62r*q2 = i|:j/2 (|r|2 r)x +0, (|r|2 )x r+py |r|2 rx}

where a;,b;,¢;,d;,&.m;.87.04,B1,07,7,,6; and p;,(I=1,2) are parameters. Here, ¢(x,7),
r(x,t) are the complex-valued wave profiles, which represent the soliton profiles for the two
components in fiber Bragg gratings. The coefficients of a;, b, are 30D and 40D, respectively.
The parameters ¢;, &; represent the SPM coefficients, while the cross-phase modulation (XPM)

effect comes from coefficients d;,n;, and §;. The parameters ¢;, B, and o, are the coefficients

of IMD, detuning parameter, and four-wave mixing effect (4WM) for the Kerr part of the
nonlinearity, respectively, while, y,; is the coefficient of SS term. Lastly, the parameters 6, and

p; are the coefficients of nonlinear dispersion terms. /=1,2 gives the coefficients used in equations
(2) and (3) for the two components in fiber Bragg gratings.

3. Mathematical analysis
In order to recover solitons with the CQ-NLSE in fiber Bragg gratings with parabolic law

nonlinearity in this paper, we set
q(x,t)=H, (g“)expi[(ﬁ(x,t)],
r(x.t) = Hy (&) expi ¢(x.1)].

E=x—vt,¢(x,t)=—Kkx+wt+6, %)

“4)

where v,k, and 6, are all non-zero parameters. Here, v is the velocity of the soliton, x is the
wave number of the soliton, @ is the frequency of the soliton and finally, 6, is the phase
parameter, while H, (&), H, (&) and ¢(x,¢) are real functions representing the amplitude portion

of the soliton and the phase component of the soliton, respectively. If we substitute (4) and (5) into
Egs. (2) and (3) and separate the real and imaginary parts, we deduce that the real parts are:

b1H§4) +3ic (&) = 2b<) Hy +(ayx @) H, +[K3 (blK_al)Jrﬂl]Hz

(6)
+(Cl —7’1’<—P1’<)Hl3 +(d1 +0'1)H1H22 JF§1Hl5 +’71H13H22 +§1H1H§ =0,
b2H1(4) +3K(a2 —2b2K)H1" +(a2K—CU)H2 +|:K3 (sz—a2)+ﬁ2:|H1 (7)
+(ey = ok = pox ) H3 +(dy + 0y ) Hy H + EH3 +1, Hy HY + o HyH' =0,
and the imaginary parts are:
(a) —4bc) Hy —(3ay —4by ) x> Hy + (o —v) Hy — (37, +26, + py ) HL Hy =0, )

(ay —4byx ) Hy —(3ay —4byx ) x> Hy +(ay —0) Hy —(37, +20, + py ) H3H, = 0. (9)
Setting
Hy(&)=4H, (&), 4#0,1, (10)
Egs. (6)-(9) become:
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blAH1(4)+3KA(a1—2b17<)H1"+[a1K—w+AK3 (blK—al)-i-Aﬂl]Hl
an
b2H1(4)+3K(a2—2b2K)H1"+[A(a2K—a))+K3 (bZK—a2)+ﬂ2}H1
(12)

A(ay —4b<) Hy J{al —v-4(3q —4b1K)K2:|H1' —(37,+20,+ p, ) HEH, =0, (13)
(ay —4byic) Hy +[A(a2 ~0)-(3a, —4b2K)K2]H1' — A (37, +26, + p, ) HEH, =0, (14)

Integrating Eqs. (13) and (14) with zero-integration constants, we have:

A(ay~4by) H + [y v~ A(3a ~ 4y ) |, —%(37/1 120+ p ) HE =0, (15)

(ay = 4byxc) H +| A(y —0) (30, ~4byi ) | Hy —§A3 (372 +26, + py ) Hy =0. (16)

Setting the coefficients of the linearly independent functions of Eqgs. (15) and (16) to zero,

yields:
k=" =12,
4, (17)
aby = ayby,
v =a, - A(3a, - 4bx) K7, (18)
Av = Ao, —(3a, —4byx) K2, (19)

From Egs. (17), (18) and (19), we have the velocity of the soliton:
oy — Aoy +8x7 (by — Aby)

L= . 22
T (22)
Egs. (11) and (12) have the same form under the constraint conditions:
hA=b,, (23)
A(Cl] —2b1K):a2—2b2K, (24)
O!lK—a)+AK3 (blrc—al)+A,Bl = A(azlc—w)+l<3 (bzlc—az)-i-ﬁz, (25)
Gmd’+ 4% = A(4°6 + Ay +85). 27

Consequently, we derive that:
(o) — Ay )k + AP, - B,

=
1-4
A:b—2: a2—2b21<’ (28)
by a-2bx

a iaz, bl ¢b2.

Eq. (11) can be rewritten in the form:
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H1(4) + LH| + Ly H, + LH} + L H} =0, (29
where
Ly = 6K2,
[allc—a)+A1<3 (bllc—al)-kAﬂl}

27 hA ’

L= [Cl —nk—pK+ A (dy +oy )} (30)
hA ’
L= (51 +my 4> +A4§1)’
b A

bd#0.

4. Unified auxiliary equation approach
According to this method, we assume that Eq. (29) has the formal solution:

N
Hy(§) =g+ 27 ()[4 (6)+Bug (£)] 3D

s=1
where 4,, A4,, B, (s=L..., N) are constants to be determined later, such that 4y #0 or

By #0, while f (5) and g(cf) satisfy the auxiliary ordinary differential equations (ODEs):

f1(&)=r(&)g(&), 32)
g (&)=aq+g>(&)+ns (&), (33)
SO0+ 19| 64

where ¢;, 1 and c are constants. Balancing H 1(4) with H 15 in Eq. (29) yields the balance number
N =1. Thus, we have:

Hy(&)=4+A4f(§)+Bg(é), (35)
where A4,, 4 and B, are constants and 4; #0 or B; #0. Substituting Eq. (35) along with
Egs.(32-34) into Eq.(29) and collecting all terms of the same order of
(&), g% (&), (4 =0,£1,2,...,, =0,1) and setting them to zero, we get a system of algebraic
equations, which can be solved with the aid of Maple or Mathematica to get the following cases:

Case-1

L=1, Ly = ¢ Ly —6cri g1 »
62
Ly =I5, L4=—#2,
(Ll_lo‘h) (36)
2¢(L —10
4 =0, A1=/¥,
B, =0.

Here L, and L; come from Eq. (30). Taking into account Egs. (35,36), we obtain the following
result:
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2C(L] —IOql)
H = (== "
(L, —10g, ) Lsc > 0.
Case -2
L =1, L, =—2q,L; +24cr —1642,
613
Ly = Ls, Ly= —#,
(Ll + ql) (38)
4, =0, 4, =0,
B - _2(L1 +20q1).
L3
By combining Egs. (35) and (38), we arrive at the following conclusion:
2(Ly +20q;)
H = |-\ T
(L; +20g;) Ly <0.
Family — 1: If ¢, =(1+m12), ] =—2m12, c=-1and 0<m <1, then
S ==
sn(f,ml)’
(40)
o(£)=- en(&,my)dn(&,my)
sn(&,my) ’

where sn, cn, and dn are Jacobi elliptic functions.
By considering Egs. (4, 5, 10, 37), and (40), and taking into consideration the inequality

[lq - 10(1 + m12 )}L} <0, we arrive at the wave profiles:

2[L1—10(1+m12ﬂ

q(x,t) _ | - ns(g’ml )ei(—rcx+wt+90)’ (41)
3
2| L —10(1+mi
r(x’t) 4l |:L1 L( m )j| (5 ml) —KkKx+wt+6 ) (42)
3

Here ns is Jacobi elliptic function and r(x,7) = Ag(x,1) .
The limiting approach applied to the retrieved Jacobi’s elliptic functions, when the modulus
of ellipticity approaches unity, reveals the soliton solutions. In particular, if ny; —1" and

(L, —20) Ly <0, then we have the singular soliton solutions:

, Ll 20 Oth z( Kx+a)t+00)’ (43)

COth —KX+wt+0 ) (44)
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Family — 2: If ¢, :(1—2m12), ] =2m12, c:(mlz—l) and 0 <my <1, then

f(&)=nc(&m),
g(é:)zsn(g’ml)dn(f,ml) (45)

en(&,my)
where nc is Jacobi elliptic function.

From the analysis of Egs.(4, 5, 10, 37), and (45), and incorporating condition
(ml2 - 1)[L1 - 10(1 —2mj )J Ly >0, we deduce the wave profiles:

q(x’t):\/Z(mlz —1)|:Lll;10(1—2m12)j| nc(g’ml)ei(fmwwHHU)’ (46)
2(m? -1)| £, —10(1-2m?
r(x,t)z y (ml )|:qu ( my ” nc(g’ml)ei(fxﬁwweo). 47)
3
Family - 3:1f g, = (~2+m ), 15j =2, ¢=(1-m{ ) and 0<m <1, then
f(&)=nd(&,m),
_ mi sn(&,my)en (&, my) (48)

B

g(&)

where nd is Jacobi elliptic function.

dn(&,m;)

Taking into account Eqs.(4, 5, 10, 37), and (48) along with condition
[L, - 10(—2 + m12 )]L3 > 0, we derive the wave profiles:

q(x,t):\/ z(l—mf)[h;w(—umlz )]nd(f,ml)e"(’““"”g“), (49)

2(1=mi )| Ly =10( =2 +m} .
r(x,t)=A\/ ( 1)_ - ( l)‘nd(é,ml)e[(_m+wt+90). (50)
3

Family — 4: If ¢ :(1+m12), n=-2, c:—ml2 and 0 <my <1, then

_ en(&,my)dn(&E,my)
sn(&,my) '

By combining Egs. (4, 5, 10, 37), and (51) and utilizing condition [Ll —10(1 + mlz )J Ly; <0,

f(§)=sn(&m). g(&)

(51

we obtain the wave profiles:

o[, 2
q(x’t) _ \/_ 2myj [Ll llj(l+m1 )Ln(g’ml)ei(,cﬁwweo)’ (52)
o[, 2
r(x’t) _ A\/_ 2mj |:L1 20(1 +my )]sn(ﬁ,ml )ei(—lcx+a)t+00). (53)
3
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In particular, if m; — 1~ and (L; —20)L; <0, then we have the dark soliton solutions:

2( —Kkx+at+6,)
/ t h , (54)
lg an

2(Ll 20 tanh Kx+cot+9) (55)

Family - 5: If ¢, =(1—2m12), R =(—2+2m12), c=m12 and 0 <my <1, then

f(&)=en(&m),

(g)__sn(é,ml)dn(f,ml) (56)
- cn(cg,ml) '

Taking into account Eqgs.(4, 5, 10, 37), and (56) along with condition

0Q

—10(1-2m?)|L; >0, we arrive at the wave profiles:
1[4

2m? [Ll ~10(1-2m; )]

q(X,f) _ (é m ) —Kx+t+0, )’ (57)
L,
2m [11—10 1-2m? ,
r(x,t) —4 1 ( ) Vn(f,ml)el(ikxmmg")- (58)
L
In particular, if m =1~ and L; >0, then we have the bright soliton solutions:
2(L; +1 ;
q(x,1)= wsech(f)el(_”m”@’), (59)
3
2 10 ;
r(xt)=4 %sech(g)e'(”*””@u). (60)

Family - 6: If g, = (-2 ), i =(2-2m]), c=1and 0<m <1, then
f(&)=dn(&,my),
misn (&, my )en(&,my) (61)

dn(&,my)
From the analysis of Egs.(4, 5, 10, 37), and (61), and incorporating condition

g(&)=-

[Ll - 10( -2+ mj )} Ly >0, we can obtain the wave profiles:

2|:L1 —10(—2+m12 ):|dn(§,m1)ei(_m+w[+00)’

)= 62)
q(x.1) I (

2| L —10( =2+ m? ,
r(x,t) -4 [L1 1(/5 % )]dn(f,ml )ez(—;cx+a;t+90)_ (63)

In particular, if m; — 1", then we have the same bright soliton solutions (59) and (60).
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Family — 7: If ¢ :(—2+m12), K :(—2+2m12), c=-1and 0<m <1, then

f(&)=cs(&.m),
g(é‘) _ dn(f,ml) (64)

sn(&,my)en(&,m;)
Here cs is Jacobi elliptic function.

Combining Egs. (4, 5, 10, 37), and (64) with condition [Ll ~10(~2+m? )}Lj <0, we deduce

the wave profiles:

q(x,t) _ | cs(é,ml )ei(—Kx+a)t+9‘,)’ (65)
Ly
2| L —10( -2+ m} .
r(x8) = Ay~ [ L( Ve (&amy ) elrvrorts) (66)
3

In particular, if m; =1 and L; <0, then we have the singular soliton solutions:

’ + 10
x t Ll csc —KX+01+0, )’ (67)
’ 2( CSCh 1 Kx+a)t+0 ) (68)

Family — 8: If qlz(l—2m12) (2m1 ~2m; ) c=-1and 0<m <1, then
f(&)=ds(&,m),
g(&)= on(eom) )

sn(&,my)dn(&E,m;)
Here ds is Jacobi elliptic function.
By considering Eqs. (4, 5, 10, 37), and (69), and taking into consideration the inequality

[Ll - 10(1 —2m} )J Ly <0, we arrive at the wave profiles:

_ 2[L1 _10(1 ~2m )JdS(é‘,rm )el(rrart),

)= 70
q(x.1) L (70)
2[L1 ~10(1-2m )]
r(x,t)=A44- 7 ds(¢&, ml) —RXFOI46,) (71)
3
In particular, if m; — 1", then we have the same singular soliton solutions (67) and (68).
Family - 9:1f g, = (~2+n ), 5; ==2, ¢=(mi ~1) and 0.<m; <1, then
dn(&,m
£(8)=selem). g(g) = —— &) )

sn(cf,ml)cn(zf,ml)'
Taking into account Eqgs.(4, 5, 10, 37), and (72) along with condition

(”112 - 1)[1,1 —10( =2+ mj )] Ly >0, we derive the wave profiles:
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2 _ _ _ 2
q(x,t):\/z(ml 1)[L1 10( 2+ m )LU(&m])ei(_mwﬁau)’ )

Ly

2 _ _ _ 2
r(x’t)zA\/Z(ml 1)|:L1L 10( 2+m1 )j| (é m]) Kx+mt+9). (74)
3

Family — 10: If ¢, :(1+m12), ] :—2m12, c=-1and 0 <my <1, then

£(&)=de(Em),
(l—mlz)sn(g,ml) (75)
en(&,my)dn(&,m)

g(&)=
Here dc is Jacobi elliptic function.
By combining Egs. (4, 5, 10, 37), and (75) and utilizing condition [Ll ~10(1+m; )JL3 <0,

we obtain the wave profiles:

_ 2
q(x,t):\/_z[Ll I(L)(1+m1 )}dc(g’ml)ei(—lcx+wt+90)’ (76)
3
B 2
r(x’t) _ A\]_ 2[14 12(1+m1 )Jdc(é ml) —KX+0t+0 ) (77)
3

Family - 11: 1f ¢, =(1=2m7 ), 1 ==2, c=(m{ —m) and 0<m, <1, then

en(&,my)
sn(&,my)dn(&E,m;)

f(&)=sd(&m), g(&)= (78)

Here sd is Jacobi elliptic function.
From the analysis of Egs.(4, 5, 10, 37), and (78), and incorporating condition

[Ll - 10(1 —2m} )J Ly >0, we can obtain the wave profiles:

2(mi —m)| L, =10(1-2m}
q(x,t):\/ ( 1 1)|: ; ( 1):| (5 m]) Kr+a)t+0)’ (79)
3
2(m? —m})| L, —10(1-2m? _
r(x,t) _ A\/ (ml my )[Llls ( my )}Sd(f,ml)el(_’m*—wt*—eﬁ)- (80)
Family - 12. If ¢, =%(—1+2m12), " :—%, c=—% and 0<m <1, then
cn(<§ my)+1
/(8)= sn(§ m) (81)
g(&)==ds(&,m).

Combining Egs. (4, 5, 10, 37), and (81) with the condition [L1 —5(—1+2m12 )]L3 <0, we

deduce the wave profiles:
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| [as(1e2d) e m
q(“)‘J‘ ( n(é

£l ei(—Kx+wt+90 ) , (82)
2L, .my)

r(x,t) _ A\/— |:Ll _5(_1+2m12 ):| [Cn(gaml)iIJei(—Kx+a)t+90). (83)

2Ly sn(&,my)

In particular, if m; — 1" and (L; —5) L <0, then we have the combo singular soliton solutions:

q(x,t) = (Ll [csch + Coth(f)l i(—Kx+01+0, )’ (84)

/ [csch &)*coth(& )] i(-xrrorsd,) (85)

Family - 13: If ¢; = ;(ml +1) 2(1 mlz), c-i(l mlz) and 0 <my <1, then

f(cf)— dn(§ ml))

mysn (&,my)£1 (86)
g(&)=Fmcd(&,my).

Here cd is Jacobi elliptic function.
By considering Eqs. (4, 5, 10, 37), and (86), and taking into consideration the inequality

Ly >0, we arrive at the following conclusion:

q(x’t):\/(l my )|:L1 +5(Wl1 +1):| [m dn(é‘,m1) ]ei(—lcx+wt+90), (87)
1

r(x’t):A\/(l my )|:L1 +5(m1 +1):|( dn(é,ml) Jei(_Kx+wt+90)- (88)

. . 1 2 1/ 2 2 1
Family — 14: If ¢, :_E(1+ml ), i :E(ml —1) , C:Z and 0 <my <1, then

f(&)=men(&,my)+dn(&,my),
g(&)=-msn(&,m).
Taking into account Eqgs. (4, 5, 10, 37) and (89) along with the condition L; >0, we derive

} L +5(1+m} ,
q(x,1)= w[mlcn(é,ml)+dn(§,ml)]el(meHH”), (90)
+5(1+m
r(x,t)= A /M [mlcn(f,ml )+dn(&,m )J (o) 91)
3

In particular, if m; — 1™, then we have the same bright soliton solutions (59) and (60).

(89)

the wave profiles:

2
Family — 15: If ¢, =—%(l+m12), " =—%(m12—1) , c=—i and 0<m; <1, then
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_en(&,my)*dn(&,m)
=" aEm 92)
g(&)=Fns(&,my).

By combining Egs. (4, 5, 10, 37), and (92) and utilizing the condition L3 <0, we obtain the

wave profiles:

2
J(1) = \/_ |:L1 +5(1+m1 )J [cn(é,ml)idn(f,ml)}i(—xﬁmw{]), 93)

2L, sn(&,m )

2
r(x,t) _ A\/_ [Ll +5(1+m1 )J |:cn(§,m1)idn(§,m1)}ei(—l(x+a)t+90). (94)
2L, sn(&,my)

In particular, if m; — 1", then we have the same singular soliton solutions (67) and (68).

Family - 16: If g, = (m;’ —6m; +1), 1rj ==2, ¢=4m (m ~1)° and 0<m <1, then

F(e)=—nlem) g(§)=—CS(<§,M1)dn(§,m1)[

- , 95
mysn® (&,my)~1 ©)

mysn” (&,my ) +1
mysn’ (é,ml)—ll-

From the analysis of Egs.(4, 5, 10, 37), and (95), and incorporating condition
[lq - 10(m12 —6m; + 1)} Ly >0, we can obtain the wave profiles:

8 1| L —10(m? —6m; +1 ,
q(x’t):\/ m (ml ) I:Ll (ml my )j|[ Sn(df,m1) ]el(—rcx+wt+90)’ (96)

L, mlsn2 (&,m)-1

2 2
r(x’t) _ A\/Sml (ml —1) |:L1 —10(m1 —6my +1)] [ Slz(é‘,im) ]ei(Kera)HHU). 97)
Ly mysn” (&,my)—1

Family - 17: If g, = (m{ +6m, +1), 1j ==2, ¢ =—4m, (m; +1)? and 0<m <1, then

sn(é,ml)

mlsn2 (&m)+1 ’

(&)=
(98)

V(e S (Em) 1
g(&)=—cs(&m)dn(g, l)lmlsnz(é,ml)”}

Combining Egs. (4, 5, 10, 37), and (98) with condition [Ll ~10(m? +6m, +1)JL3 <0, we
deduce the wave profiles:

2
q(x,t) _ \/_ 8my (m1 +1) |:L1 —10(71112 +6my +1)j| { Sn(fJle) :lei(—xx+wt+00)

Ly

(99

2 2
r(x’[)—A\/_ 8m1(m1 +1) [Ll _10(m1 +6m, +1)}[ sn(fgml) }ei(l{x+wt+90). (100)

L3 mlsnz (f,ml)+1
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In particular, if m; — 1~ and (L, —80)L; <0, then we have the combo dark singular soliton

solutions:
a(x)= _32(2_80) (tanh(é)icoth(f)Jei(_“meﬂ)’ (101)
r(ne)=4 _32(113_ = (tanh(g)icoth(é)}i(KWHQO)' (102
Family — 18: If ¢, = —%(l+m12), " :%(mf -1), c= %(mf ~1) and 0 <m; <1, then
bl srf?c.?(%lll’ (103)

g(&)=%de(&.m).
By considering Egs. (4, 5, 10, 37), and (103), and taking into consideration the inequality

[L1 + 5(1 +m} )} Ly <0, we arrive at the wave profiles:

q(x,t):\/(mf—l)[Q+5(l+m12)]{ en(&,my) }ei(—"HwH@o)

2L, sn(&,my)*1 ’ (104)
)= A (m12—1)|:L1+5(1+m12):| Cn(g’ml) i(—kx+ot+6,)
)= 2L, sn(&,my )£l ¢ ' (105)
Family — 19: If ¢, =%(2—m12),r1 =—%m14,c:—% and 0< m; <1, then
3 dn(f,ml)il
/(6= sn(&,m;) (106)

g(&)=Fcs(&my).
Taking into account Egs.(4, 5, 10, 37), and (106) along with condition

[Ll - 5(2 - mlz )J Ly <0, we derive the wave profiles:

q(x,t)z\/—[l'l —5(2—m12)] {dn(gz,ml 1—)—’_1:|ei(:<x+wz+90)

>

2L ,
3 sn(&,m (107)
2
r(x I)ZA |:l4 —5(2—7111 ):| dn(gaml = ei(—lcx+a)t+00)
’ 2L, sn(&,my) '
(108)
In particular, if m; — 1™, then we have the same combo singular solutions (84) and (85).
1 2 1 1
Family — 20: If ¢, =—(2m; —1), n=——, ¢=—— and 0<m, <1, then
y il 2( 1 ) i > 4 1
sn(&,m
f(§)=—( )
1+cn(&,my) (109)

g(é):ids(é,ml).
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By combining Egs. (4), (5), (10), (37), and (109) and utilizing the condition
|:lq - 5(2m12 - 1)]L3 <0, we obtain the following result:

L —5(2m? -1 ,
q(x,t): _|: 1 ( 1 )j||: sn(é‘,ml) :|et(—l(x+a)t+90)’ (110)
2L, l+cn(&,my)
L -5(2mf -1 ,
(o) = A4 _[ ( i )]{ sn(&,my) :Iez(—xxmmau)_ (111
2L, 1+en(&,my)
In particular, if m; —1" and (L;—5)L; <0, then we have the combo singular soliton
solutions:
_ _(LI_S) 1 i(—kx+ot+6,)
100 =5 | o (@) rean (@) )¢ ’ (1)
— _(Ll _5) 1 i(—kx+o1+0,)
() =4 2L; | coth(&)+csch(&) ¢ ’ (113)
. 1 1 1 2
Family - 21: If ¢, :—E(l—i-mlz), ] =7 c:—Z(mlz —1) and 0 <my <1, then
3 sn(cg,ml)
7(e)= en(&,m)+£dn(&,m)’ (114)

g(&)=4#ns(&,my).
From the analysis of Eqgs. (4, 5, 10, 37), and (114), and incorporating condition I3 <0, we

can obtain the wave profiles:

a(nt) = _(mf —1)2 [Ll +5(1+m] )} [ sn(&,my) }i(_mm”gﬂ)

N 2L, cen(&,my)xdn(&,my)

, (115)

r(x,t)= A4

() [ s(em)]T sngem) T aveonna
2L, Ln(cf,ml)idri(é,ml)}e( 6)' (116)

Similarly, it is possible to find many other solutions for Egs. (2) and (3) using Eq. (39),
which are omitted here for simplicity.

5. Conclusions
In this study, we have comprehensively investigated the fascinating phenomena of gap solitons

with cubic-quartic dispersive reflectivity and the parabolic law of nonlinear refractive index. Our
research aimed to shed light on the properties, behaviors, and potential applications of these
localized optical modes within periodic structures. Throughout our analysis, we have delved into
the foundational works on gap solitons, building upon the pioneering studies of Sipe [1] and
further exploring the concepts introduced by Alfimov and Konotop [2]. Additionally, we extended
the understanding of gap solitons into the realm of driven-dissipative topological lattices inspired
by the work of Pernet et al. [3]. Furthermore, we investigated their relevance in Bragg gratings,
inspired by the insightful studies by Eggleton et al. [4] and Taverner et al. [5].
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A plethora of solutions has emerged from the model on CQ solitons in fiber Bragg gratings
with the parabolic law of nonlinearity having dispersive reflectivity. These solutions that naturally
emerged with the aid of a unified auxiliary equation are in terms of Jacobi’s elliptic functions,
which come with a parameter that is known as the modulus of ellipticity. Upon taking the limit,
when this modulus of ellipticity approached zero, periodic solutions arose. However, it is
important to emphasize that the present paper does not include these solutions as they are not
applicable to optics. On the other end of the spectrum, soliton solutions are yielded when the
modulus approaches unity. Thus, a wide spectrum of solutions is being reported in this manuscript.
With the focus of this work being photonics in telecommunications, the soliton solutions will play
an important role in fiber optic communication in the presence of Bragg gratings.

The results thus show a lot of promise in future ventures for Bragg gratings that are modeled
with CQ solitons. The model has yet to recover conservation laws. The numerical simulations of
the model with Adomian decomposition, Laplace~Adomian decomposition, and finite element
approach are all applicable to study the model from another perspective. The model with fractional
temporal evolution and with time—dependent coefficients is a few droplets of the ocean of avenues
to pursue. These results are yet to be disseminated.
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Anomayia. Ioenmu@ikosano nosHuil CHEKMp CONIMOHI8 ONMUYHOI WINUHU ) BOJOKOHHUX
Ope22i6CoKUX Tpamkax 3 KyOIYHO-K8APMUYHOK OUCHEPCIlIHOI0 8i0OUBHOK 30AMHICMIO NpU
HeNHIUKIIL  CMPYKmMYypi NOKA3HUKA 3A10MAeHHA napaboniunoco muny. I panuunuii nioxio,
3aCcmocoganuii 00 BIOHOBNeHUX —eninmuyHux @yukyil Axobi, npu npamysauwHi Mooyis
eninmuYHOCMi 00 OOUHUYI NPUBOOUMB 00 CONIMOHHUX PO38 A3KIS.

Knrouosi cnoea: conimonu, pewimiu bpezea, kyoiunuti—keapmosuii, Axkooi.
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