
   

Ukr. J. Phys. Opt. 2023, Volume 24, Issue 4 04030 

Gap solitons with cubic-quartic dispersive reflectivity and 
parabolic law of nonlinear refractive index 

1Zayed Elsayed M. E., 2Shohib Reham. M. A., 3,4,5,6Biswas Anjan, 7Yildirim 
 Yakup, 6Aphane Maggie, 8Moshokoa Seithuti P., 9Khan Salam  & 4Asiri Asim  

1 Mathematics Department, Faculty of Science, Zagazig University, Zagazig–44519, 
  Egypt.  
2 Basic Science Department, Higher Institute of Foreign Trade & Management Sciences, 
  New Cairo Academy, Cairo–379, Egypt. 
3 Department of Mathematics and Physics, Grambling State University, Grambling, 
  LA–71245, USA.  
4 Mathematical Modeling and Applied Computation (MMAC) Research Group, Center 
  of Modern Mathematical Sciences and their Applications (CMMSA), Department of 
  Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia. 
5 Department of Applied Sciences, Cross–Border Faculty of Humanities, Economics 
  and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati–
  800201, Romania. 
6 Department of Mathematics and Applied Mathematics, Sefako Makgatho Health 
  Sciences University, Medunsa–0204, Pretoria, South Africa. 
7 Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey.  
8 Department of Mathematics and Statistics, Tshwane University of Technology, 
  Pretoria–0008, South Africa. 
9 Independent Researcher, Madison, AL 35758, USA. 

Received: 26.05.2023 

Abstract. A full spectrum of optical gap solitons in fiber Bragg gratings with cubic–
quartic dispersive reflectivity is identified. The nonlinear refractive index structure is 
of parabolic law type. When the modulus of ellipticity approaches unity, the limiting 
approach to the retrieved Jacobi’s elliptic functions reveals the soliton solutions. 
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1. Introduction  
Gap solitons are fascinating phenomena in the field of nonlinear optics, where light waves can be 
localized and trapped in the bandgap of periodic structures. Over the years, significant progress 
has been made in understanding the properties and behaviors of gap solitons. In this section, we 
present a literature review discussing the key findings from previous studies, which have laid the 
groundwork for our investigation. Sipe [1] provided  foundational work on gap solitons in his 
contribution to "Guided Wave Nonlinear Optics." He explored the theoretical aspects of gap 
solitons and their existence in periodic structures. This work served as a cornerstone in the 
exploration of localized optical modes within bandgaps. Following Sipe's work, Alfimov and 
Konotop [2] further investigated the existence of gap solitons in the context of nonlinear systems. 
Their study delved into the stability and dynamical properties of these solitons in the presence of 
various nonlinearity regimes, shedding light on the intricate behavior of gap solitons. Pernet et al. 
[3] extended the concept of gap solitons into a one-dimensional driven-dissipative topological 
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lattice. This study introduced new aspects of non-Hermitian systems and explored how dissipation 
and driving forces can impact the formation and stability of gap solitons, offering valuable insights 
into the effects of external driving on localized states. Eggleton et al. [4] contributed to the 
understanding of gap solitons in Bragg gratings, focusing on their properties and potential 
applications in fiber optic systems. This work has been instrumental in the development of 
photonic devices based on gap solitons, offering possibilities for all-optical signal processing and 
control. Moreover, Taverner et al. [5] examined nonlinear self-switching and multiple gap-soliton 
formation in fiber Bragg gratings. Their investigation highlighted the rich dynamics and 
interactions that can occur between multiple solitons within such periodic structures. While these 
studies have significantly contributed to our knowledge of gap solitons, a comprehensive 
understanding of their full range of behaviors and potential applications remains elusive. In this 
work, we aim to address some of the outstanding questions and explore novel aspects related to 
gap solitons with cubic-quartic dispersive reflectivity and the parabolic law of nonlinear refractive 
index. 

The study of optical solitons in optical fibers, photonic-crystal fiber (PCF), metamaterials, 
optical couplers, and fibers with Bragg gratings is going on strong and steady for the past few 
decades [6-15]. Lately, the concept of cubic–quartic (CQ) solitons emerged when it was realized 
that the delicate balance between chromatic dispersion (CD) and self–phase modulation (SPM) 
grows feeble when CD gets low. In that case, to boost up the much-needed balance, it is necessary 
to compensate for the low count of CD by introducing higher-order dispersive effects. These are 
third–order dispersion (3OD) and fourth–order (4OD) dispersion terms. Together, these constitute 
CQ dispersive effects. For fiber Bragg gratings, it is the dispersive reflectivity, which originally 
stems from CD, and now comes from CQ dispersion. SPM originates from the parabolic law of 
nonlinear refractive effects that dictates the structure of optical fibers. This combination of CQ 
dispersive reflectivity together with the parabolic law of nonlinearity is the model of study for 
fiber Bragg gratings in the current paper. The main goal is to retrieve soliton solutions to this 
newly proposed model. The unified auxiliary equation approach is the integration tool that would 
reveal solutions to the model in terms of Jacobi’s elliptic functions, which would, in turn, yield 
soliton solutions after a limiting process when the modulus of ellipticity approaches unity. These 
results are displayed after an introductory mathematical analysis. 

2. Governing model 
The CQ nonlinear Schrödinger’s equation (NLSE) in polarization-preserving fibers with parabolic 
law in presence of perturbation terms is:  

 
    

2 4
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   (1) 

where q q(x, t) is the wave profile, qt gives the temporal dispersion, qx is the spatial dispersion, 
qxxx and qxxxx correspond to the 3OD and 4OD, respectively, a  and b  are the coefficients of 3OD 
and 4OD respectively, while the coefficients of c  and d  account for parabolic law of nonlinear 
refractive index. Here   is the coefficient of intermodal dispersion (IMD). The parameter   
controls self–steepening (SS) effect. Lastly,   refers to the coefficient of nonlinear dispersion.  

The CQ-NLSE in fiber Bragg gratings for parabolic law nonlinearity is written for the first 
time in the form:  
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where , , , , , , , , , , ,l l l l l l l l l l l la b c d          and  , 1, 2l l   are parameters. Here,  ,q x t , 

 ,r x t  are the complex-valued wave profiles, which represent the soliton profiles for the two 
components in fiber Bragg gratings. The coefficients of la , lb  are 3OD and 4OD, respectively. 
The parameters lc , l  represent the SPM coefficients, while the cross-phase modulation (XPM) 
effect comes from coefficients ,l ld   and .l  The parameters l , l  and l  are the coefficients 
of IMD, detuning parameter, and four-wave mixing effect (4WM) for the Kerr part of the 
nonlinearity, respectively, while, l  is the coefficient of SS term. Lastly, the parameters l  and 

l  are the coefficients of nonlinear dispersion terms. l=1,2 gives the coefficients used in equations 
(2) and (3) for the two components in fiber Bragg gratings. 

3. Mathematical analysis 
In order to recover solitons with the CQ-NLSE in fiber Bragg gratings with parabolic law 
nonlinearity in this paper, we set 

     
     

1

2

, exp , ,

, exp , ,

q x t H i x t

r x t H i x t

 

 

   
   

    (4) 

  0, , ,x t x t x t               (5) 

where , ,    and 0  are all non-zero parameters. Here,   is the velocity of the soliton,   is the 

wave number of the soliton,   is the frequency of the soliton and finally, 0  is the phase 

parameter, while    1 2,H H   and  ,x t  are real functions representing the amplitude portion 

of the soliton and the phase component of the soliton, respectively. If we substitute (4) and (5) into 
Eqs. (2) and (3) and separate the real and imaginary parts, we deduce that the real parts are: 
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and the imaginary parts are: 

       ''' 2 ' ' 2 '
1 1 2 1 1 2 1 1 1 1 1 1 14 3 4 3 2 0,a b H a b H H H H                 (8) 

       ''' 2 ' ' 2 '
2 2 1 2 2 1 2 2 2 2 2 2 24 3 4 3 2 0.a b H a b H H H H                 (9) 

Setting  
   2 1 ,  0,1,H AH A       (10) 

Eqs. (6)-(9) become: 
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     ''' 2 ' 2 '
1 1 1 1 1 1 1 1 1 1 1 14 3 4 3 2 0,A a b H A a b H H H                   (13) 

       ''' 2 ' 3 2 '
2 2 1 2 2 2 1 2 2 2 1 14 3 4 3 2 0.a b H A a b H A H H                   (14) 

Integrating Eqs. (13) and (14) with zero-integration constants, we have: 
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Setting the coefficients of the linearly independent functions of Eqs. (15) and (16) to zero, 
yields: 
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  2
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1 1 13 2 0,          (20) 

2 2 23 2 0.          (21) 
From Eqs. (17), (18) and (19), we have the velocity of the soliton: 
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Eqs. (11) and (12) have the same form under the constraint conditions: 

1 2 ,b A b       (23) 

 1 1 2 22 2 ,A a b a b        (24) 
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Consequently, we derive that: 
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Eq. (11) can be rewritten in the form: 
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where 
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4. Unified auxiliary equation approach 
According to this method, we assume that Eq. (29) has the formal solution: 

       1
1 0

1
 ,

N
s

s s
s
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        (31) 

where 0 ,A  ,sA  sB  ( 1,.....,s   )N  are constants to be determined later, such that 0NA   or 

0,NB   while  f   and  g   satisfy the auxiliary ordinary differential equations (ODEs):  

      ,f f g         (32) 

     2 2
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     2 2 21
1 ,

2
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    (34) 

where 1,q  1r  and c  are constants. Balancing  4
1H with 5

1H  in Eq. (29) yields the balance number 

1N  . Thus, we have: 

     1 0 1 1 ,  H A A f B g         (35) 

where 0 ,A  1A  and 1B  are constants and 1 0A   or 1 0B  . Substituting Eq. (35) along with 

Eqs. (32 - 34) into Eq. (29) and collecting all terms of the same order of 

     1 2
1 2, 0, 1, 2,..., 0,1,l lf g l l       and setting them to zero, we get a system of algebraic 

equations, which can be solved with the aid of Maple or Mathematica to get the following cases: 
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Here L1 and L3 come from Eq. (30). Taking into account Eqs. (35,36), we obtain the following 
result: 
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Case - 2 
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By combining Eqs. (35) and (38), we arrive at the following conclusion: 
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where sn, cn, and dn are Jacobi elliptic functions. 
By considering Eqs. (4, 5, 10, 37), and (40), and taking into consideration the inequality 

 2
1 1 310 1 0L m L   

 
, we arrive at the wave profiles: 
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Here ns is Jacobi elliptic function and  , ( , )r x t Aq x t . 

The limiting approach applied to the retrieved Jacobi’s elliptic functions, when the modulus 

of ellipticity approaches unity, reveals the soliton solutions. In particular, if 1 1m  and 

 1 320 0L L  , then we have the singular soliton solutions: 
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where nc is Jacobi elliptic function. 
From the analysis of Eqs. (4, 5, 10, 37), and (45), and incorporating condition 
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   0

2 2
1 1 1

1
3

2 1 10 1 2
, nc , ,i x t

m L m
q x t m e

L
     

       (46) 

 
   

   0

2 22 1 10 1 21 1 1
, nc , .1

3

i x t
m L m

r x t A m e
L

     

        (47) 

Family – 3: If  2
1 12 ,q m    1 2,r    2

11c m   and 10 1,m   then 

   

     
 

1
2
1 1 1

1

nd , ,  

sn , cn ,
,

 dn ,

f m

m m m
g

m

 

 







    (48) 

where nd is Jacobi elliptic function. 
Taking into account Eqs. (4, 5, 10, 37), and (48) along with condition 

 2
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, we derive the wave profiles: 
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By combining Eqs. (4, 5, 10, 37), and (51) and utilizing condition  2
1 1 310 1 0L m L    

, 

we obtain the wave profiles: 
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In particular, if 1 1m   and  1 320 0L L  , then we have the dark soliton solutions:      
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Taking into account Eqs. (4, 5, 10, 37), and (56) along with condition 
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1 1 310 1 2 0L m L     , we arrive at the wave profiles: 
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In particular, if 1 1m    and 3 0L  , then we have the bright soliton solutions:  
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From the analysis of Eqs. (4, 5, 10, 37), and (61), and incorporating condition 
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, we can obtain the wave profiles: 
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In particular, if 1 1m  , then we have the same bright soliton solutions (59) and (60). 
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Here cs is Jacobi elliptic function. 

Combining Eqs. (4, 5, 10, 37), and (64) with condition  2
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In particular, if 1 1m   and 3 0L  , then we have the singular soliton solutions:  
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Here ds is Jacobi elliptic function. 
By considering Eqs. (4, 5, 10, 37), and (69), and taking into consideration the inequality 
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, we arrive at the wave profiles: 
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In particular, if 1 1m  , then we have the same singular soliton solutions (67) and (68). 
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Taking into account Eqs. (4, 5, 10, 37), and (72) along with condition 
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, we derive the wave profiles: 
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Here dc is Jacobi elliptic function. 

By combining Eqs. (4, 5, 10, 37), and (75) and utilizing condition  2
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we obtain the wave profiles: 
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Here sd is Jacobi elliptic function. 
From the analysis of Eqs. (4, 5, 10, 37), and (78), and incorporating condition 
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Combining Eqs. (4, 5, 10, 37), and (81) with the condition  2
1 1 35 1 2 0L m L    

 
, we 

deduce the wave profiles: 
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In particular, if 1 1m   and  1 35 0L L  , then we have the combo singular soliton solutions: 

         01

3

5
, csch coth ,

2
i x tL

q x t e
L

      
        (84) 

         01

3

5
, csch coth .

2
i x tL

r x t A e
L

      
        (85) 

Family - 13: If      2 2 2
1 1 1 1 1

1 1 11 , 1 , 1
2 2 4

q m r m c m        and 10 1,m   then 

   
 

   

1

1 1

1 1

dn ,
, 

sn , 1

cd , .

m
f

m m

g m m






 




 
    (86) 

Here cd is Jacobi elliptic function. 
By considering Eqs. (4, 5, 10, 37), and (86), and taking into consideration the inequality 

3 0L  , we arrive at the following conclusion: 
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Family – 14: If  2
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Taking into account Eqs. (4, 5, 10, 37) and (89) along with the condition 3 0L  , we derive 
the wave profiles: 
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In particular, if 1 1m  , then we have the same bright soliton solutions (59) and (60). 

Family – 15: If    22 2
1 1 1 1

1 1 11 , 1 ,
2 2 4

q m r m c         and 10 1,m   then 
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By combining Eqs. (4, 5, 10, 37), and (92) and utilizing the condition 3 0L  , we obtain the 

wave profiles: 
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In particular, if 1 1m  , then we have the same singular soliton solutions (67) and (68). 
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From the analysis of Eqs. (4, 5, 10, 37), and (95), and incorporating condition 

 2
1 1 1 310 6 1 0L m m L    

 
, we can obtain the wave profiles: 
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Family – 17: If  2
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Combining Eqs. (4, 5, 10, 37), and (98) with condition  2
1 1 1 310 6 1 0L m m L    

 
, we 

deduce the wave profiles: 
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In particular, if 1 1m   and  1 380 0L L  , then we have the combo dark singular soliton 

solutions: 
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By considering Eqs. (4, 5, 10, 37), and (103), and taking into consideration the inequality 

 2
1 1 35 1 0L m L   

 
, we arrive at the wave profiles: 
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Taking into account Eqs. (4, 5, 10, 37), and (106) along with condition 

 2
1 1 35 2 0L m L    

, we derive the wave profiles: 
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In particular, if 1 1m  , then we have the same combo singular solutions (84) and (85). 

Family – 20: If  2
1 1

1 2 1 ,
2

q m   1
1 ,
2

r    1
4

c    and 10 1,m   then 

   
 

   

1

1

1

sn ,
,  

1 cn ,

ds , .

m
f

m

g m






 




 

    (109) 



Gap solitons  

Ukr. J. Phys. Opt. 2023, Volume 24, Issue 4 04043 

By combining Eqs. (4), (5), (10), (37), and (109) and utilizing the condition 

 2
1 1 35 2 1 0L m L   

 
, we obtain the following result: 
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In particular, if 1 1m   and  1 35 0L L  , then we have the combo singular soliton 

solutions: 
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From the analysis of Eqs. (4, 5, 10, 37), and (114), and incorporating condition 3 0L  , we 

can obtain the wave profiles: 
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Similarly, it is possible to find many other solutions for Eqs. (2) and (3) using Eq. (39), 
which are omitted here for simplicity.  

5. Conclusions 
In this study, we have comprehensively investigated the fascinating phenomena of gap solitons 
with cubic-quartic dispersive reflectivity and the parabolic law of nonlinear refractive index. Our 
research aimed to shed light on the properties, behaviors, and potential applications of these 
localized optical modes within periodic structures. Throughout our analysis, we have delved into 
the foundational works on gap solitons, building upon the pioneering studies of Sipe [1] and 
further exploring the concepts introduced by Alfimov and Konotop [2]. Additionally, we extended 
the understanding of gap solitons into the realm of driven-dissipative topological lattices inspired 
by the work of Pernet et al. [3]. Furthermore, we investigated their relevance in Bragg gratings, 
inspired by the insightful studies by Eggleton et al. [4] and Taverner et al. [5]. 
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A plethora of solutions has emerged from the model on CQ solitons in fiber Bragg gratings 
with the parabolic law of nonlinearity having dispersive reflectivity. These solutions that naturally 
emerged with the aid of a unified auxiliary equation are in terms of Jacobi’s elliptic functions, 
which come with a parameter that is known as the modulus of ellipticity. Upon taking the limit, 
when this modulus of ellipticity approached zero, periodic solutions arose. However, it is 
important to emphasize that the present paper does not include these solutions as they are not 
applicable to optics. On the other end of the spectrum, soliton solutions are yielded when the 
modulus approaches unity. Thus, a wide spectrum of solutions is being reported in this manuscript. 
With the focus of this work being photonics in telecommunications, the soliton solutions will play 
an important role in fiber optic communication in the presence of Bragg gratings.  

The results thus show a lot of promise in future ventures for Bragg gratings that are modeled 
with CQ solitons. The model has yet to recover conservation laws. The numerical simulations of 
the model with Adomian decomposition, Laplace–Adomian decomposition, and finite element 
approach are all applicable to study the model from another perspective. The model with fractional 
temporal evolution and with time–dependent coefficients is a few droplets of the ocean of avenues 
to pursue. These results are yet to be disseminated. 
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Анотація. Ідентифіковано повний спектр солітонів оптичної щілини у волоконних 
бреггівських ґратках з кубічно-квартичною дисперсійною відбивною здатністю при 
нелінійній структурі показника заломлення параболічного типу. Граничний підхід, 
застосований до відновлених еліптичних функцій Якобі, при прямуванні модуля 
еліптичності до одиниці приводить до солітонних розв’язків. 

Ключові слова: солітони; решітки Брегга; кубічний–квартовий; Якобі.  


