Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 4


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Optical solitons and group invariants for Chen-Lee-Liu equation with time-dependent chromatic dispersion and nonlinearity by Lie symmetry

1Rahul Kumar, 1Rajeev Kumar, 2Anupma Bansal, 3,4,5,6Anjan Biswas, 7Yakup Yildirim, 8Seithuti P. Moshokoa and 4Asim Asiri

1Department of Mathematics, Maharishi Markandeshwar Deemed to be University, Mullana, Ambala-133001 (Haryana), India.
2Department of Mathematics, D.A.V. College for Women, Ferozepur-152001 (Punjab), India.
3Department of Mathematics and Physics, Grambling State University, Grambling, LA-71245, USA.
4Mathematical Modeling and Applied Computation (MMAC) Research Group, Center of Modern Mathematical Sciences and their Applications (CMMSA), Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia.
5Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania.
6Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa.
7Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey.
8Department of Mathematics and Statistics, Tshwane University of Technology, Pretoria-0008, South Africa.

ABSTRACT

This paper uses the classical Lie symmetry method for optical solitons to study the Chen-Lee-Liu equation. We are able to establish symmetries that convert the model into a set of ordinary differential equations and obtain solutions of the reduced equations through various methods

Keywords: solitons; Chen-Lee-Liu equation; Lie symmetry analysis

UDC: 535.32

    1. Biswas A, Yildirim Y, Yasar E, Zhou Q, Moshokoa S P, Belic M, 2018. Optical solitons for Lakshmanan-Porsezian-Daniel model by modified simple equation method. Optik 160: 24-32. doi:10.1016/j.ijleo.2018.01.100
    2. Arshed S, Biswas A, Abdelaty M, Zhou Q, Moshokoa SP, Belic M, 2018. Optical soliton perturbation for Gerdjikov-Ivanov equation via two analytical techniques. Chin. J. Phys. 56 (6): 2879-2886. doi:10.1016/j.cjph.2018.09.023
    3. Biswas A, Ekici M, Sonmezoglu A, Alqahtani RT, 2018. Sub-pico-second chirped optical solitons in mono -mode fibers with Kaup-Newell equation by extended trial function method. Optik, 168: 208-216. doi:10.1016/j.ijleo.2018.04.069
    4. Ray SS, 2020. Dispersive optical solitons of time-fractional Schrödinger-Hirota equation in nonlinear optical fibers. Phys. A: Stat. Mech. 537: 122-619. doi:10.1016/j.physa.2019.122619
    5. Biswas A, Yildirim Y, Yasar E, Triki H, Alshomrani AS, Ullah MZ, Zhou Q, Moshokoa SP, Belic M, 2018. Optical soliton perturbation with complex Ginzburg-Landau equation using trial solution approach. Optik, 160: 44-60. doi:10.1016/j.ijleo.2018.01.102
    6. Biswas A, 2018. Optical soliton perturbation with Radhakrishnan-Kundu-Lakshmanan equation by traveling wave hypothesis. Optik, 171: 217-220. doi:10.1016/j.ijleo.2018.06.043
    7. Chen HH, Lee YC, Liu CS, 1979. Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20: 490-492. doi:10.1088/0031-8949/20/3-4/026
    8. Triki H, Hamaizi Y, Zhou Q, Biswas A, Ullah MZ, Moshokoa SP, Belic M, 2018. Chirped singular solitons for Chen-Lee-Liu equation in optical fibers and PCF. Optik, 157: 156-160. doi:10.1016/j.ijleo.2017.11.088
    9. Biswas A, Ekici M, Sonmezoglu A, Alshomrani AS, Zhou Q, Moshokoa SP, Belic M, 2018. Chirped optical solitons of Chen-Lee-Liu equation by extended trial equation scheme. Optik, 156: 999-1006. doi:10.1016/j.ijleo.2017.12.094
    10. Zeng X, Geng X, 2014. Quasi periodic solutions of the discrete Chen-Lee-Liu hierarchy. Theor. Math. Phys. 179 (3): 649-678. doi:10.1007/s11232-014-0169-7
    11. Su T, Geng X, Dai H, 2010. Algebro-geometric constructions of semi-discrete Chen-Lee-Liu equations. Phys. Lett. A, 374: 3101-3111. doi:10.1016/j.physleta.2010.05.051
    12. Asma M, Othman WAM, Wong BR, Biswas A, 2018. Optical soliton perturbation with quadratic-cubic nonlinearity by Adomian decomposition method. Optik 164: 632-641. doi:10.1016/j.ijleo.2018.03.008
    13. Alqahtani RT, Babatin MM, Biswas A, 2018. Bright optical solitons for Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle. Optik, 154: 109-114. doi:10.1016/j.ijleo.2017.09.112
    14. Zhang Y, Guo L, He J, Zhou Z, 2015. Darboux transformation of the second-type derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105: 853-891. doi:10.1007/s11005-015-0758-x
    15. Biswas A, Ekici M, Sonmezoglu A, Alshomrani AS, Zhou Q, Moshokoa SP, Belic M, 2018. Chirped optical solitons of Chen-Lee-Liu equation by extended trial equation scheme. Optik, 156: 999-1006. doi:10.1016/j.ijleo.2017.12.094
    16. Li Z, Li L, Tian H, Zhou G, 2000. New types of solitary wave solutions for the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 84: 4096-4099. doi:10.1103/physrevlett.84.4096
    17. Zhang J, Liu W, Qiu D, Zhang Y, Porsezian K, He J, 2015. Rogue wave solutions of a higher-order Chen-Lee-Liu equation. Phys. Scr. 90: 055207. doi:10.1088/0031-8949/90/5/055207
    18. Chow KW, Ng TW, 2011. Periodic solutions of a derivative nonlinear Schrödinger equation: elliptic integrals of the third kind. J. Comput. Appl. Math. 235 (13): 3825-3830. doi:10.1016/j.cam.2011.01.029
    19. Guha P, 2003. Geometry of Chen-Lee-Liu type derivative nonlinear Schrödinger flow, Regul. Chaotic Dyn. 8 (2): 213-224.
    20. Moses J and Wise F W, 2007. Self-steepening without self-phase modulation. 2007 Conference on Lasers and Electro-Optics (CLEO), Baltimore, MD, USA, pp. 1-2,. doi:10.1109/cleo.2007.4453560
    21. Tsuchida T, Wadati M, 1999. New integrable systems of derivative nonlinear Schrödinger equations with multiple components. Phys. Lett. A, 257: 53-64. doi:10.1016/s0375-9601(99)00272-8
    22. Bansal A, Kara AH, Biswas A, Moshokoa SP, Belic M, 2018. Optical soliton perturbation, group invariants and conservation laws of perturbed Fokas-Lenells equation. Chaos Solit. Fractals, 114: 275-280. doi:10.1016/j.chaos.2018.06.030
    23. Bansal A, Biswas A, Zhou Q, Babatin MM, 2018. Lie symmetry analysis for cubic-quartic nonlinear Schrödinger equation. Optik, 169: 12-15 doi:10.1016/j.ijleo.2018.05.030
    24. Ovsiannikov LV, Group analysis of differential equations. New York: Academic Press, (1982).
    25. Olver PJ, Applications of Lie groups to differential equations. New York: Springer Verlag, (1993).
    26. Bluman GW, Cole JD, Similarity methods for differential equations. New York: Springer Verlag, (1974).
    27. Gupta RK, Bansal A, 2013. Painleve analysis, Lie symmetries and invariant solutions of potential Kadomstev Petviashvili equation with time dependent coefficients, Appl. Math. Comput. 219: 5290-5302. doi:10.1016/j.amc.2012.11.044
    28. Gupta RK, Bansal A, 2013. Similarity reductions and exact solutions of generalized Bretherton equation with time-dependent coefficients. Nonlinear Dyn. 71: 1-12. doi:10.1007/s11071-012-0637-2

    У цій статті вивчається рівняння Чена-Лі-Лю з використанням класичного методу симетрії Лі для оптичних солітонів. Продемонстровано можливість встановлення симетрій, які перетворюють модель на набір звичайних диференціальних рівнянь і отримання розв’язків скорочених рівнянь різними методами

    Ключові слова: солітони, рівняння Чен-Лі-Лю, аналіз симетрії Лі


© Ukrainian Journal of Physical Optics ©