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Abstract. This paper uses the classical Lie symmetry method for optical solitons to 
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the model into a set of ordinary differential equations and obtain solutions of the 
reduced equations through various methods.  
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1. Introduction 
The theory of optical solitons provides technology across the globe in the field of fiber-optic 
communication systems. There are various models that govern the dynamics of soliton 
propagation, including birefringent fibers, optical fibers, photonic-crystal fiber (PCF), 
metamaterials, and others. Soliton solutions play a vital role in the telecommunications industry. 
The Nonlinear Schrödinger’s equation (NLSE) is one of the most commonly studied equations. In 
recent years, many authors have analyzed various models for different aspects. Some of the 
available models are the Lakshmanan-Porsezian-Daniel model [1], the Gerdjikov-Ivanov equation 
[2], the Kaup-Newell equation [3], the Schrödinger-Hirota model [4], the complex Ginzburg-
Landau equation [5], the Radhakrishnan-Kundu-Lakshmanan equation [6], and several others. 
Several papers are readily available with such models and their corresponding soliton dynamics. 

In nonlinear optics, three types of derivative NLSEs are being studied. The Chen-Lee-Liu 
(CLL) equation [7] is one such model in the family of NLSEs that was first introduced in 1979 and 
has gained importance ever since. There have been several studies regarding this equation in the 
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past [8, 9]. Several mathematical algorithms [10, 11] have already been successfully implemented 
to address such models using well-known techniques, including the Adomian decomposition 
method [12], the semi-inverse variational principle [13], the Darboux transformation [14], and the 
chirped W-shaped optical solitons [15]. 

In the context of optical fiber, the generation of combined solitary waves for the CLL 
equation was first reported by Li et al. [16] in 2000. The rogue wave solutions with this model 
were reported by Zhang et al. [17]. Triki et al. [8] retrieved chirped singular solitons using the 
traveling wave approach for the CLL equation. The work in this paper focuses on handling the 
propagation of an optical pulse modeled by a family of the following CLL equation [18]-[21], 
which is also known as the generalized CLL equation with variable coefficients, as described 
below 

    2| | 0,t xx xiz f t z ig t z z      (1) 

where  ,z z x t , the dependent variable, represents the complex-valued function to be 

determined, tz  gives the temporal dispersion, xz  is the spatial dispersion, xxz  corresponds to the 

higher-order dispersion,  f t  and  g t  are arbitrary functions of time. This equation is a 

generalization of the standard CLL equation, as presented below 

2| | 0,t xx xiz fz ig z z       (2) 

where f  and g  are constants. Eq. (2) transforms into the regular CLL equation when 1f g  . 

In optical fiber, the term g  represents the coefficient of self-steepening nonlinearity, while the 

coefficient f  gives the group velocity dispersion. In the upcoming sections of this manuscript, 

Lie symmetry analysis [22]-[23] will be presented to find optical solitons and group invariant 
solutions of Eq. (1). 

2. Classical Lie symmetry analysis 
The study of differential equations with symmetry analysis has been gaining popularity recently. 
In this paper, we explain how to derive the symmetries, symmetry reductions, and group invariant 
solutions of the variable coefficient CLL equation using the Lie classical method [24]-[28] 
algorithmic way. To determine the symmetry analysis admitted by Eq. (1), let us consider 

      , , , ,z x t u x t iv x t      (3) 

which splits Eq. (1) into its real and imaginary portions as:  

    2 2 0t xx xv f t u g t u v v      and     2 2 0.t xx xu f t v g t u v u     (4) 

To locate the classical symmetries, we will now consider the Lie group of continuous 
transformations as follows:  

       
       

2 2

2 2

ˆ ˆ

ˆˆ

, , , , , , , ,

, , , , , , , ,

u u x t u v o v v x t u v o

x x x t u v o t t x t u v o

 

 

     

     

   

   
  (5) 

which remains the system (4) invariant under this one-parameter transformation. This leads to an 
overdetermined linear system of equations for the infinitesimals  , , ,x t u v ,  , , ,x t u v , 

 , , ,x t u v , and  , , ,x t u v . Thus, the invariance condition of Eq. (1) yields: 
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      
      

 2 2

2 2  2 2 0

t xx x
xx

x x

f t f t u g t u v

g t u v v u v g t v

   

  





    

    
     

   and       (6) 

      
      

 2 2

2 2  2 2 0.

t xx x
xx

x x

f t f t v g t u v

g t u v u u v g t u

   

  





   

    
     

By substituting the values of the infinitesimal t , t , x , x , xx , and xx  into (6) and 
equating the same power of various differentials to zero, we obtain the desired system of 
overdetermined partial differential equations (PDEs). Solving this overdetermined system of PDEs 
yields:  

1 2 2 1 3 4, ,c u c v c u c v c x c          and 
     
3 52

 
c c

f t dt
f t f t

   , (7) 

where 1c , 2c , 3c , 4c , and 5c  are arbitrary constants, and  f t  and  g t  are governed by the 

following specific conditions: 
       1 32 0,tg t c c g t g t      and      32 0.tf t c f t f t      (8) 

The associated infinitesimal generators are presented as follows:  

   1 2 3 4
2, , ,G u v G v u G x f t dt G

u v u v x f t t x
      

      
        and 

 5
1 .G

f t t





 

(9) 
The vector fields form a Lie algebra provided by (9) as: 

       
     
   
 

1 2 1 3 1 4 1 5

2 3 2 4 2 5

3 4 3 5 5

4 5

4

, , , ,

, ,

0, 0, 0, 0,

0, 0, 0,

, , 2

,

,

, .

,

0

G G G G G G G G

G G G G G G

G G G G G

G

G

G

   

  

  




  (10) 

3. Reductions and exact solutions of variable coefficient CLL equation 
In this section, our main goal is to derive the exact solutions of Eq. (1) through the reduced 
equations. The similarity variables and forms can be obtained by using characteristic equations as: 

,dx dt du dv
   

        (11) 

To achieve symmetry reductions and exact solutions, we will discuss the following four cases 
of vector fields: 1. 3G ; 2. 4 5G G ; 3. 5G  and 4. 2 4 5G G G  , where   is an arbitrary real 

number different from zero. 

3.1. Reduction under 3G  
Solving Eq. (11) leads to the similarity variables in the following form:  

     

  
   

  1 1/2 /2, .
2  

, ,iV f t
z x t U e g tx

dt f tf dtt

   


 (12) 

Treating  U   and  V   as new dependent variables with a new independent variable  , 

and using Eq. (12) in Eq. (1), we obtain a special nonlinear ordinary differential equation as 
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follows: 

              2 3  1( ) 0
2 2

U V U U V U V
                

and           (13) 

                  212 0.
2 2

U U V U V U U
                  

We are only able to retrieve a constant solution for the studied equation here. 

3.2. Reduction under 4 5G G  
The similarity variables for the vector fields 4 5G G  are given by:  

           6, ,, .iVz x t U e g t cx f t dt f t       (14) 

By substituting Eq. (14) into Eq. (1), Eq. (1) reduces to the following system of ordinary 
differential equations (ODEs): 

              2 3  
6( ) 0,U V U U V c U V               (15) 

and 

                  2
62 0.U U V U V c U U                 (16) 

Multiplying Eq. (16) by  U   and integrating the resulting equation with respect to   

gives: 

       2  2 4
6

1 1 0.
2 4

U V U c U          (17) 

Using Eq. (17) leads to: 

    2
6

1 1 ,
2 4

V c U B          (18) 

where B  is an arbitrary constant. By substituting Eq. (18) into Eq. (15) and multiplying it again 

with   U   and integrating, we obtain:  

           4 2 2  2 2 6
6 64 1 4 1 4 16( ) 0.c B U B U U c U           (19) 

By choosing    2U Q   in Eq. (19), we conclude that: 

           2 4 3 2 2  2
6 64 1 4 1 4 4( ) 0.c Q c B Q B Q Q          (20) 

Upon solving Eq. (20), the solution of the variable coefficient CLL equation is given as: 
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 1 4 
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
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 

  


 

 

 

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 



   
     


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


  (21) 



Optical solitons  

Ukr. J. Phys. Opt. 2023, Volume 24, Issue 4 04025 

where   is given by Eq. (14) and C1 is an arbitrary constant of integration.  

3.3. Reduction under 5G  

In this case, the similarity variables are given as follows:  

     

   7

, ,
,

,

iVz x t U e
x

g t c f t











    (22) 

which presents the reduced form of Eq. (1) as:  

         2 3  
7( ) 0,U U V c U V            (23) 

and 

               2
72 0.U V U V c U F             (24) 

In this case, due to the complexity of the above system of equations, we are unable to find 
non-trivial solutions for it. 

3.4. Reduction under 2 4 5G G G   

The similarity variables are obtained by taking the characteristic equation as: 

        
 

   

 , ,

,

i f t dt Vz x t e U

x f t dt

g t f t




 

 

 


 .   (25) 

Hence, Eq. (1) turns out to be the following system of ODEs  

                
2   3  0U U V U U V U V                , (26) 

and 

                 2  2 0U U V U V U U                .  (27) 

Multiplying Eq. (27) by  U   and integrating once gives:  

       2  2 41 1 0
2 4

U V U U        .   (28) 

Using Eq. (28) leads to: 

    21
2 4

V U M
      ,    (29) 

where M  is an arbitrary constant. Putting (29) into (26) and once more multiplying it with  U   

and integrating, leads to:  

            
24 2 2 2  64 16 4 16 16 0M U M U U U            .  (30) 

Substituting    2U H   into Eq. (30) gives us:  

            24 3 2 2 2  4 4 4 4 4 0.H M H M H H              (31) 

Upon solving Eq. (31), the following solution of the variable coefficient CLL equation is 
obtained:  
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 
    2 2

4 4 4
3 1  5 16  16 64  

2 8 8
4, e .

i f t dt C C C x f t dt
z x t C

               
  

 
  (32) 

where C4 is an arbitrary positive constant of integration. 
To obtain different solutions, we take the following form of  H  : 

   0 1tanh ,H C C      (33) 

(C0 represents the difference between the two stable states of the shock wave) which leads to the 
dark optical soliton solution of the variable coefficient CLL equation as:  

        

 

 

 

2 2 2

1/2
2 2

2

, ,

,

1 20 5 20 5 8 20 17 20
5

1tanh 8 20 17 20 ,
10

i f t dt Vz x t U e

x f t dt

U

C




 

     

   

 

 


       



 
       

 


  (34) 

and 

 
2 2

2

2 2

2 2
2

2 2

2 2

2 2
2

1 3 1 8  20 17 2020
10 20 4 8  20 17 20

1ln tanh  8  20 17 20 1
10

1 8  20 17 20
4 8  20 17 20

1ln tanh  8  20 17 20 1 ,
10

V

C

C

   
  

  

   

  

  

   

   
    

  

         
 

   


  

 
        

 

  (35) 

where C2 is the constant of integration that represents the center position shift.  

However, the discriminant 2 28 20 17 20      must be both positive and negative 
simultaneously for solitons. Therefore, we can set this discriminant to zero in order to obtain 
certain solitons. 

Let us take  H   to be of the form:  

   0 1coth ,H C C      (36) 

and the singular soliton solution appears as: 

        

 

 

 

2 2 2

1/2
2 2

2

, ,

,

1 20 5 20 5 8  20 17 20
5

1coth  8  20 17 20 ,
10

i f t dt Vz x t U e

x f t dt

U

C




 

     

   

 

 


       



        
 


  (37) 

and 
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  2
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1 3 20
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1 8  20 17 20
4 8  20 17 20

1ln coth  8  20 17 20 1 .
10
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  (38) 

However, the discriminant 2 28 20 17 20      must be both positive and negative 
simultaneously for solitons. We can set this number to zero to obtain certain solutions. 

Taking  H   to be of the form:  

    0 1sech ,H C C       (39) 

which leads to the bright soliton solution: 

     
         2

1

1/2
2 2

1

1 rctan sinh 3 4
2 2

, 2 3 4 sech 3 4

e ,
i f t dt x f t dt x f t dt C

z x t x f t dt C

   

  

        
 

       

  



  (40) 

whereas the discriminant for bright solitons, given by Eq. (40), must be positive, which is expressed as:  
23 4 0.        (41) 

Assuming the following form of  H  : 

   0 1csch ,H C C      (42) 

yields another kind of singular soliton solution as: 

   
 

2
2 1

2

1
22 2

1

 1 1 3 4 1    ln tanh  3 4
2 2 2 23 4

, 2 3 4  csch 3 4

e .

Ci f t dt

z x t C
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
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                   

         




  (43) 

However, the discriminant 23 4   must be both positive and negative simultaneously for 
solitary solitons, as given by Eq. (43). As a result, it can be concluded that the variable coefficient 
CLL equation does not contain any such form of singular soliton. 

4. Conclusions 
In this manuscript, we have successfully found the optical soliton solutions of the variable 
coefficient CLL equation with the aid of the Lie classical method. The reduced system of 
nonlinear ODEs obtained by symmetry reductions provides new bright soliton solutions by 
implementing the scheme of integration and gives us certain conditions under which other singular 
solitons can be obtained. The results of this paper can be useful for further investigation in future 
research. All the results have been verified using Maple software. 
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Анотація. У цій статті вивчається рівняння Чена-Лі-Лю з використанням класичного 
методу симетрії Лі для оптичних солітонів. Продемонстровано можливість встановлення 
симетрій, які перетворюють модель на набір звичайних диференціальних рівнянь і 
отримання розв’язків скорочених рівнянь різними методами. 

Ключові слова: солітони, рівняння Чен-Лі-Лю, аналіз симетрії Лі. 


