Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 3


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Bright and dark optical solitons for the concatenation model by the Laplace-Adomian decomposition scheme

1O. Gonzalez-Gaxiola, 2,3,4,5Anjan Biswas, 6J. Ruiz de Chavez and 3Asim Asiri

1Applied Mathematics and Systems Department, Universidad Autonoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, 05348 Mexico City, Mexico
2Department of Mathematics and Physics, Grambling State University, Grambling, LA-71245, USA
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
4Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, Pretoria, South Africa
5Department of Applied Sciences, Cross-Border Faculty of Humanities, Economics and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania
6Department of Mathematics, Universidad Autonoma Metropolitana-Iztapalapa, Av San Rafael Atlixco No.186 Col. Vicentina, 09340 Mexico City, Mexico

ABSTRACT

This paper retrieves numerically the bright and dark 1-soliton solutions for the newly constructed concatenation model using the Laplace-Adomian decomposition technique. The errors analysis is also conducted, and they are of the order of 10-9. The surface, sectional, and error plots are exhibited for bright and dark solitons

Keywords: solitons; concatenation model; Adomian polynomials

UDC: 535.32

    1. Zabusky N J, Kruskal M D, 1965. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15: 240-243. doi:10.1103/PhysRevLett.15.240
    2. Hasegawa A, Tappert F, 1973. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23: 142-144. doi:10.1063/1.1654836
    3. Hasegawa A, Tappert F, 1973. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23: 171-172. doi:10.1063/1.1654847
    4. Ankiewicz A, Akhmediev N, 2014. Higher-order integrable evolution equation and its soliton solutions. Phys.Lett. A. 378: 358-361. doi:10.1016/j.physleta.2013.11.031
    5. Ankiewicz A, Wang Y, Wabnitz S, Akhmediev N, 2014. Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions. Phys.Rev. E. 89: 012907. doi:10.1103/PhysRevE.89.012907
    6. Biswas A, Vega-Guzman J, Kara A K, Khan S, Triki H, González-Gaxiola O, Moraru L, Georgescu PL, 2023. Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach. Universe, 9: 15. doi:10.3390/universe9010015
    7. Wang M-Y, Biswas A, Yildirim Y, Moraru L, Moldovanu S, Alshehri H M, 2023. Optical solitons for a concatenation model by trial equation approach. Electronics, 12: 19. doi:10.3390/electronics12010019
    8. Kudryashov N A; Biswas A, Borodina A G, Yildirim Y, Alshehri H M, 2023. Painlevé analysis and optical solitons for a concatenated model. Optik, 272: 170255. doi:10.1016/j.ijleo.2022.170255
    9. Triki H, Sun Y, Zhou Q, Biswas A, Yildirim Y, Alshehri H M, 2022. Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects. Chaos, Solit. Fractals. 164: 112622. doi:10.1016/j.chaos.2022.112622
    10. Adomian G, Rach R, 1986. On the solution of nonlinear differential equations with convolution product nonlinearities. J.Math.Anal.Appl. 114: 171-175. doi:10.1016/0022-247X(86)90074-0
    11. Al-Qarni A A, Alshaery A A, Bakodah H O, 2020. Optical solitons for the Lakshmanan-Porsezian-Daniel model by collective variable method. Results Opt. 1: 100017. doi:10.1016/j.rio.2020.100017
    12. Wazwaz A-M, Mehanna M, 2021. Higher-order Sasa-Satsuma equation: Bright and dark optical solitons. Optik, 243: 167421. doi:10.1016/j.ijleo.2021.167421
    13. Adomian G, Solving frontier problems of physics: The decomposition method. Boston MA: Kluwer Acad.Pub., (1994). doi:10.1007/978-94-015-8289-6
    14. González-Gaxiola O, Biswas A, Alzahrani A K, Belic M R, 2021. Highly dispersive optical solitons with a polynomial law of refractive index by Laplace-Adomian decomposition. J.Comput.Electron. 20: 1216-1223. doi:10.1007/s10825-021-01710-x
    15. Mohammed A S H F, Bakodah H O, 2021. Numerical investigation of the Adomian-based methods with w-shaped optical solitons of Chen-Lee-Liu equation. Phys. Scr. 96: 035206. doi:10.1088/1402-4896/abd0bb
    16. Duan J-S, 2011. Convenient analytic recurrence algorithms for the Adomian polynomials. Appl.Math.Comput. 217: 6337-6348. doi:10.1016/j.amc.2011.01.007
    17. Cherruault Y, 1990. Convergence of Adomian's method. Kybernotes 18 (20): 31-38. doi:10.1108/eb005812
    18. Cherruault Y, Adomian G, 1993. Decomposition methods: a new proof of convergence. Math. Comput. Modelling, 18 (12): 103-106. doi:10.1016/0895-7177(93)90233-O
    19. Wazwaz A M, 2009. Partial differential equations and solitary waves theory. Berlin/Heidelberg: Springer-Verlag, (2009). doi:10.1007/978-3-642-00251-9
    20. Al Qarni A A, Bodaqah A M, Mohammed A S H F, Alshaery A A, Bakodah H O, Biswas A, 2023. Dark and singular cubic-quartic optical solitons with Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme. Ukr. J. Phys. Opt. 24 (1): 46-61. doi:10.3116/16091833/24/1/46/2023

    В цій статті чисельно отримані яскраві та темні 1-солітонні розв’язки для новоствореної моделі конкатенації з використанням техніки декомпозиції Лапласа-Адоміана. Також проведений аналіз похибок, які становлять порядку 10-9. Для яскравих і темних солітонів представлені їхні графіки поверхонь, розрізів і похибок

    Ключові слова: солітони; модель конкатенації; многочлени Адоміана


© Ukrainian Journal of Physical Optics ©