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Abstract. This paper retrieves numerically the bright and dark 1-soliton solutions 
for the newly constructed concatenation model using the Laplace-Adomian 
decomposition technique. The errors analysis is also conducted, and they are of the 
order of 10-9. The surface, sectional, and error plots are exhibited for bright and dark 
solitons. 
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1. Introduction 
Over sixty years ago, N. J. Zabusky and M. D. Kruskal created the term soliton, which refers to a 
stable solitary wave propagating in a nonlinear medium [1]. They were not the first to identify the 
extraordinary qualities of solitary waves, initially described in scientific literature as “a massive 
solitary elevation, a rounded, smooth, and well-defined mound of water,” originating back to John 
Scott Russell's 18th-century observation in a canal near Edinburgh. A few years later, in 1973,  
A. Hasegawa and F. Tappert published two fundamental works on nonlinear pulse transmission, 
which opened the door for optical solitons and nonlinear fiber optics [2, 3]. In the five decades 
since the publication of Hasegawa and Tappert's works, from applied mathematics and physics to 
chemistry and biology, theoretical and experimental explorations of solitary waves have 
proliferated and permeated a vast array of scientific fields. As universal models of propagation of 
solitons, many renowned equations appear in both their canonical and extended versions. 

Nonlinear Schrödinger's equation (NLSE) is the most basic model explored to describe the 
dynamics of the propagation of solitons through optical fibers. There are several models that 
describe soliton dynamics that depend on various physical situations. The dispersive optical 
solitons are governed by the Schrödinger-Hirota equation, Fokas-Lenells equation, Radhakrishnan-
Kundu-Lakshmanan equation, and many more. In birefringent fibers, the fundamental model is the 
Manakov equation. Apart from these familiar models, there are various other governing equations 
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that have been studied in Quantum Optics. They are Lakshmanan-Porsezian-Daniel (LPD) model, 
the Sasa-Satsuma equation (SSE), the Kundu-Eckhaus equation, and various others. 

In consequence, a recent trend in Quantum Optics is the formulation of a new concatenation 
model by combining these well-known models. This is the conjunction of the familiar NLSE, 
LPD, and SSE. Less than a decade ago, such a concatenation model was first proposed [4, 5]. 
Later, this model has been studied to carry out its Painlevé analysis and its full spectrum of  
1-soliton solutions have been retrieved as well as its conserved quantities [6, 7, 8, 9]. It is now 
time to move further along.  

In 1986, G. Adomian and R. Rach created the Laplace-Adomian decomposition method 
(LADM) to solve an extensive class of nonlinear differential equations [10]. Since 1986, LADM 
has been one of the most efficient mathematical methods for providing accurate numerical 
approximation solutions for a wide range of nonlinear problems. The method is well suited for 
physical problems since it may handle nonlinear problems without the need for linearization, 
perturbation, or discretization while requiring fewer calculations than traditional techniques.  

Using LADM, this article analyzes the concatenation model numerically. Thus, a numerical 
analysis of bright and dark optical solitons for the model is recovered by the application of LADM. 
The error analysis is also conducted, and it shows that the absolute error is of the order of 10-9. The 
details of the scheme and the corresponding numerical schemes are all exhibited in detail in the 
rest of the paper with perfect clarity.  

The structure of the paper is as follows: In Section 2, we shall introduce the concatenation 
model briefly. In Section 3, both bright and dark solitons for the model are introduced as well as 
some restrictions necessary for their existence. In Section 4, the basic idea of LADM is explained 
step by step as well as its implementation to generate an algorithm that provides solutions to the 
concatenation model. The application of LADM on the concatenation model for different sets of 
coefficients and subject to different initial conditions is presented in Section 5. Finally, the 
conclusion is presented in Section 6.  

2. The concatenation model 
The concatenation model was first described in [4, 5] and is the result of combining two well-
known models in optics, namely the Lakshmanan-Porsezian-Daniel (LPD) model [11] and the 
Sasa-Satsuma equation (SSE) [12]. This model is provided in its dimensionless form by: 
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where q q(x, t) is the wave profile, qt gives the temporal dispersion, qx is the spatial dispersion, 
qxx, qxxx and qxxxx correspond to the higher-order dispersions, σi – represents the coefficients of 
nonlinearity, while a is the coefficient associated with second-order dispersion and b represents the 
coefficient of the nonlinear refractive index governed by the Kerr law. The coefficients of c1 and c2 
are the portions from LPD and SSE, respectively. 

The model of concatenation provided in (1) corresponds to its name. When c1= 0, (1) simplifies 
to the well-known SSE, but for c2 = 0, (1) simplifies to the LPD model. However, if c1 = c2 = 0, it 
collapses to the well-known NLSE. Combining the Adomian decomposition technique with the well-
known Laplace transform will display the bright and dark solitons for model (1) for the first time. 
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The several constraint conditions that will arise logically from the structure will also ensure the 
solitons existence requirements. In succeeding sections, the specifics are listed and illustrated. 

3. The governing model for the bright and dark solitons  
3.1. Bright solitons 
The bright soliton solution to (1), studied through the technique of indeterminate coefficients in  
[6, 7], is denoted by:  

     1 0 
1 1 , sech   ,i x tq x t A B x vt e            (2) 

where A1 represents the amplitude of the bright soliton, while B1 is the width of the bright soliton, 
 represents the soliton wavenumber, 1 and θ0 represent the frequency and phase constant, 
respectively, v is soliton velocity, x is coordinate, and t is time. The velocity v of the bright soliton 
is obtained as:  

 2
1 12  4   .v a c          (3) 

The amplitude 1A  and frequency 1 are represented with respect to the soliton width as 
follows: 

 
 

2 2
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2 10 
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Z Z Z B




 
    (4) 

and   

 2 2 4 4
1 3 1 1 1 1  3 ,a Z B c B            (5) 

while the width 1B  is given by: 
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. (6) 

Thus, for simplicity, we have used the following notation:  

   2
2 1 2 3 4 5 2 8 9   Z b c c              ,  (7) 

2
3 1 16 ,Z a c           (8) 

 4 1 4 5 ,Z c           (9) 

 5 1 2 3 .Z c         (10) 
As can be seen in [6], the parameters Z2, Z3, Z4, and Z5 emerge in the derivation of the 

mathematical form of solitons using the technique of indeterminate coefficients.  
Finally, the restrictions that ensure the existence of bright solitons are as follows: 

   2 8 9 1 2 4 5  2 ,c c            (11) 

2 7 1 14 ,c c        (12) 

    3
1 1 1 6 2 3 4 5 2 3 4 5100 4  0c                    , (13) 

  2 2
1 2 3 4 5 1 1 2 96 ,c c           (14) 

and 
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  
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2 2
1 1 1

2 2
1 2 3 4 5 2 8 9 1 2 3 4 5 1

2 3 5   

   0 .
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b c c c B

 
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 

           
 (15) 

These latter restrictions are required from a mathematical standpoint in order for the 
coefficients A1 and B1 that involve radicals and quotients to be specified properly [6]. 

3.2. Dark solitons 
The dark soliton solution to (1), studied through the technique of indeterminate coefficients in  
[6, 7], is denoted by:  

     2 0   
2 2, tanh i x tq x t A B x vt e        , (16) 

where the velocity v  of the dark soliton, is given as in Eq. (3), the amplitude A2 and frequency 2  

are represented with respect to the soliton width B2 as follows:   

 

2 2
3  1 1 2 2

2 2
2 4 5 2

2 ( 10 ) 
 ,

Z c B B
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Z Z Z B
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 
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    (17) 

and 

 
    
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 (18) 

while the width B2 is given by: 
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 (19) 

The same notation given by Eqs. (7)-(10) has also been adopted here. Finally, the restrictions 
that ensure the existence of dark solitons are as follows:  

   2 8 9 1 2 4 5 2  ,c c             (20) 

2 7 1 1 4 ,c c        (21) 

    3
1 1 1 6 2 3 4 5 2 3 4 5100    4   0,c                     (22) 

and 

      2 2
1 2 3 4 5 2 8 9 1 2 3 4 5 2     2   b c c c B                     . (23) 

These latter restrictions are required from a mathematical standpoint in order for the 
coefficients A2 and B2 that involve radicals and quotients to be specified properly [6]. For further 
information about the concatenation model as well as its soliton-type solutions, the reader is 
recommended to the recent work published in [7]. 

4. Methodology: a brief overview 
This section will provide a quick overview of the well-known Adomian decomposition technique 
and its enhancement arising from its combination with the Laplace transform [10, 13, 14]. 
Development is centered on attaining bright and dark solitons for the concatenated model (1). 
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In general, we may express Eq. (1) using operators as: 
     , , , 0tD q x t Rq x t Nq x t   ,    (24) 

subject to the initial condition  
   ,q x t f x ,     (25) 

where ( , )t tD q x t iq  is a standard temporal derivation operator, and ( , )Rq x t  is a linear 
differential operator, which in this context is:  

  1 1 2 7 ,  xx xxxx xxxRq x t aq c q ic q    ,   (26) 

nevertheless, ( , )Nq x t  is a non-linear operator that works as: 

   

 
2 22 2* 2 *

1 2 1 3 1 4 1 5

4 2 2 *
1 6 2 8 9 

,  

  

x x xx xx

x x

Nq x t b q q c q q c q q c q q c q q

c q q ic q q q q
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  

    

  
    (27) 

According to the classic Adomian decomposition approach, the unknown function q  in any 

equation is decomposed into the sum of an infinite amount of summands defined by the 
decomposition series: 

   
0

,  , ,n
n

q x t q x t



     (28) 

where the  ,nq x t  components must be computed recursively. Individually finding components 

1 2 3,  ,   ,q q q   is the purpose of the decomposition technique, with being 0q  the initial condition. 

Furthermore, the Adomian technique decomposes the nonlinear part as follows: 

   0
0

,  , , ,n n
n

Nq x t P q q



   (29) 

where nP  are all Adomian polynomials [15]. 
The nonlinear operator provided by Eq. (27) may be broken down as: 

     1 2 3 4 5 6 7  8,   , ,Nq x t N N N N N N N N q x t          (30) 

where 

  2
1 , N q b q q     2 *

2 1 2 ,xN q c q q    2
3 1 3 ,xN q c q q    

  2
4 1 4 ,xxN q c q q    2 *

5 1 5  ,xxN q c q q    4
6 1 6 ,N q c q q  (31) 

  2
7 2 8 ,xN q ic q q    2 *

8 2 9   .xN q ic q q    

There exists a decomposition into an infinite series of Adomian polynomials for all nonlinear 
terms 1 8, ,N N , as follows:   

   0 1
0

 , , ,  1,2, 8.j
j n n

n
N q P q q q j




       (32) 

In (32), j
nP  symbolizes the Adomian polynomials for every  1, 2, , 8,j    which are to be 

generated using the following formulae [16]: 
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n q
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 (33) 
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The convergence of the series (32) is discussed in more detail in [17, 18]. 
From here on, we shall refer to the Laplace transform as    and the inverse operator as 1 . 

With   applied to both sides of the functional Eq. (24), we obtain: 

      , , , 0.tD q x t Rq x t Nq x t      (34) 

With the initial condition that will be determined by the solitons first profiles f , we get: 

           1,  ,  ,  q x t f x Rq x t Nq x t
s
       .  (35) 

where s is complex frequency domain parameter. 
Substituting Eqs. (28) and (32) into Eq. (35), one obtains: 

       
8

0
0 0 1 1

1,  ,   , ,  .j
n n n n

n n j n
q x t f x R q x t P q q

s

  

   

                                       
       (36) 

By comparing the two sides of Eq. (36), we get the Laplace transform of each portion of the 
solution, which is:  

    0 , s q x t f x     (37) 

In addition, the recursive relations are given for every 1m   as:  

       
8

1 01
1 1

,  ,  , ,  .j
m m nm

j n
s q x t Rq x t P q q



 
 

           
     (38) 

Here, we will calculate several Adomian polynomials by considering the q-variable nonlinear 
operators jN   appearing in Eqs. (31) and by using the formula (33), we obtain: 

1 2 *
0 0 0 ,P bq q  

 1 * 2 *
1 1 2 0 1 0 2P b q q q q q  , 

 1 * 2 * 2 * *
2 2 0 0 1 0 2 0 1 1 0 2  2 ,P b q q q q q q q q q q     

 1 * 2 * 2 * * * *
3 3 0 1 1 2 1 0 1 2 0 0 3 0 0 1 22  2  2  2 ,P b q q q q q q q q q q q q q q q q       

 1 * 2 * 2 * 2 * * * * * *
4 4 0 2 1 0 2 3 1 0 2 2 0 1 3 0 0 4 0 1 1 2 0 1 3 2  2  2  2  2 2P b q q q q q q q q q q q q q q q q q q q q q q q q           

2 2 *
0 1 2 0 0σ   ,xP c q q  

 2 * 2 *
1 1 2 1 0 0 1 0σ 2 ,x x xP c q q q q q   

 2 * 2 * 2 * *
2 1 2 2 0 0 1 0 2 0 1 1 0 σ 2  2 ,x x x x x xP c q q q q q q q q q q    

2 * 2
3 1 2 3 0σ (  xP c q q   * 2

1 1xq q  +  *
2 1 02 x xq q q   * * *

1 2 0 0 3 0 0 1 22 2  2 ),x x x x x xq q q q q q q q q   

 1 * 2 * 2 * 2 * * * * * *
4 4 0 2 1 0 2 3 1 0 2 2 0 1 3 0 0 4 0 1 1 2 0 1 3P q  2  2  2  2  2 2b q q q q q q q q q q q q q q q q q q q q q q q          

. 

. 

. 

. 
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3 *
0 1 3 0 0 0 σ x xP c q q q ,  

 3 * * *
1 1 3 0 0 1 0 1 0 1 0 0 σ   x x x x x xP c q q q q q q q q q   , 

 3 * * * * * *
2 1 3 0 0 2 0 1 1 0 2 0 1 0 1 1 1 0 2 0 0 σ      x x x x x x x x x x x xP c q q q q q q q q q q q q q q q q q q      , 




3 * * * * * *
3 1 3 0 0 3 0 1 2 0 2 1 0 3 0 1 0 2 1 1 1

* * * *
1 2 0 2 0 1 2 1 0 3 0 0

 σ          

    ,

x x x x x x x x x x x x

x x x x x x x x

P c q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q

     

    




3 * * * * * * *
4 1 3 0 0 4 0 1 3 0 2 2 0 3 1 0 4 0 1 0 3 1 1 2

* * * * * * * *
1 2 1 1 3 0 2 0 2 2 1 1 2 2 0 3 0 1 3 1 0 4 0 0

σ       

     , 

x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

P c q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q q q q

     

      
 

. 

. 

. 
4 *

0 1 4 0 0 0 σ ,xxP c q q q  

 4 * * *
1 1 4 1 0 0 0 1 0 0 0 1 σ q  q  q ,xx xx xxP c q q q q q q     

 4 * * * * * *
2 1 4 2 0 0 1 1 0 0 2 0 1 0 1 0 1 0 0 0 2σ     ,xx xx xx xx xx xxP c q q q q q q q q q q q q q q q q q q        




4 * * * * * *
3 1 4 3 0 0 2 1 0 1 2 0 0 3 0 2 0 1 1 1 1

* * * *
0 2 1 1 0 2 0 1 2 0 0 3

     

  ,

xx xx xx xx xx xx

xx xx xx xx

P c q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q

     

   
   





4 * * * * * *
4 1 4 4 0 0 3 1 0 2 2 0 1 3 0 0 4 0 3 0 1

* * * * *
2 1 1 1 2 1 0 3 1 2 0 2 1 1 2
* * * *
0 2 2 1 0 3 0 1 3 0 0 4

     

   

  

xx xx xx xx xx xx

xx xx xx xx xx

xx xx xx xx

P c q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q

q q q q q q q q q q q q

     

    

  

 

. 

. 

. 
5 2 *

0 1 5 0 0xxσ   ,P c q q  

 5 2 * *
1 1 5 1 0 0 2 0σ  2 ,xx xxP c q q q q q   

 5 2 * * * 2 *
2 1 5 1 0 0 2 0 0 1 1 0 2 σ  2  2 ,xx xx xx xxP c q q q q q q q q q q     

 5 2 2 * * * * 2 *
3 1 5 1 1 1 2 0 0 3 0 0 2 1  0 1 2 0 3σ  2  2  2 2 ,xx xx xx xx xx xxP c q q q q q q q q q q q q q q q q        




5 2 * * 2 * * *
4 1 5 1 2 1 2 1 2 0 1 3 0  0 4 0  

* * * 2 *
0 3 1 0 2 2 0 1 3  0 4

 σ  2   2  2

 2 2  2 ,

xx xx xx xx xx

xx xx xx xx

P c q q q q q q q q q q q q q

q q q q q q q q q q q

    

   
 

. 

. 

. 
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6 *2 3
0 1 6 0 0 σ  ,P c q q  
6 * * 3 *2 2

1 1 6 0 1 0 0 1 0 σ (2 3  ),P c q q q q q q   

 6 *2 3 * * 3 * * 2 *2 2 *2 2 2
2 1 6 1 0 0 2 0 0 1 1 0 0 2 0 0 1 0 σ  2  6  3  3 ,P c q q q q q q q q q q q q q q q      




6 * * 3 * * 3 *2 2 * * 2 * * 2
3 1 6 1 2 0 0 3 0 1 1 0 0 2 1 0 0 1 2 0

*2 2 * * 2 *2 *2 3
0 3 0 0 1 1 0 0 1 2 0 0 1

 σ 2  2  3   6  6

3  6  6  

P c q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q

    

   
  

6 *2 3 * * 3 * * 3 * * 2 * * 2 *2 2
4 1 6 2 0 1 3 0 0 4 0 1 2 1 0 0 3 1 0 1 2 0

* * 2 * * 2 *2 2 *2 2 * * 2 *2 2
0 2 2 0 0 1 3 0 0 4 0 1 1 0 0 2 1 0 0 2 0

* * *2 * * 3
0 1 1 2 0 0 1 3 0 0 1 1 0

 σ 2  2 6 6 3  

6 6  3   3  6  3

12 6  2    3

P c q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q

    

     

   



*2 2
1 2 ,q q

  

. 

. 

. 
7 *

0 2 8 0 0 0 σ  ,xP ic q q q  

 7 * * *
1 2 8 1 0 0 0 1 0 0 0 1 σ      , x x xP ic q q q q q q q q q    

 7 * * * * * *
2 2 8 2 0 0 1 1 0 0 2 0 1 0 1 0 1 1 0 0 2σ            x x x x x xP ic q q q q q q q q q q q q q q q q q q       




7 * * * * * *
3 2 8 3 0 0 2 1 0 1 2 0 0 3 0 2 0 1 1 1 1

* * * *
0 2 1 1 2 1 0 1 2 0 0 3

     x x x x x x

x

P ic q q q q q q q q q q q q q q q q q q

q q q q q q x q q q x q q q x

     

   
  





7 * * *
4 2 8 4 0 0  3 1 0 2 2 0

* * * * * *
1 3 0 0 4 0  3 0 1 2 1 1 1 2 1 0 3 1

* * * * * *
2 0 2 1 1 2 0 2 2 1 0 3 0 1 3 0 0 4

 σ   

      

      

x x x

x x x x x x

x x x x x x

P ic q q q q q q q q q

q q q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q q

  

     

     

  

. 

. 

. 
8 * 2
0 2 9 0 0 σ xP ic q q  

 8 * 2 *
1 2 9 1 0 0 1 0 σ  ,x xP ic q q q q q   

 8 * 2 * * * 2
2 2 9 2 0 1 1 0 0 2 0 0 1 σ  2   x x x xP ic q q q q q q q q q q      

8 * 2 * * * * 2 *
3 2 9 3 0 2 1 0 1 2 0  0 3 0 1 1 0 1 2  σ 2  2  2   2x x x x x xP ic q q q q q q q q q q q q q q q q      




8 * 2 * * * *
4 2 9 4 0 3 1 0 2 2 0 1 3 0 0 4 0 

* 2 * *
2 1 1 1 2 0 1 3 

 σ  2  2  2  2

 2  2

x x x x x

x x x

P ic q q q q q q q q q q q q q q

q q q q q q q q

    

  
, 

for other Adomian polynomials, and so on. 
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Lastly, when the inverse Laplace transform 1  is taken into account, the components 

0 1 2, ,  , ,  q q q  are found by:  

 

   

      

      

      

0

8
1

1 0 00
1

8
1

2 1 01
1

8
1

1 01
1

 , ,

1 1 ,    , , , ,

1 1 ,    , , , ,

1 1 ,    , , ,

j
n

j

j
n

j

j
m m nm

j

q x t f x

q x t Rq x t P q q
s s

q x t Rq x t P q q
s s

q x t Rq x t P q q
s s










 





               
               

  










  

  

   , 1,m
     







   









 






 (39) 

where 0q  is referred to as the initial condition or the zero-th component. 
The differential equation being studied was subsequently turned into an impressive 

determination of computable components when the Eq. (39) was applied. After identifying these 
components, we replace them with the expression (28) to have the solution in a series form. 

Several researchers have shown explicitly that if a problem has an exact solution, the 
resulting series converges relatively quickly to that solution. Several authors carefully explored the 
convergence idea of the decomposition series to validate the quick convergence of the resultant 
series. In [17], Cherruault analyzed the convergence of Adomian's approach. In addition, 
Cherruault and Adomian [18] gave a novel convergence proof for the approach. For further 
information about the proofs offered to describe fast convergence, the reader is referred to the 
sources listed above and the references included within. See [19] for further information on the 
methodology and its special applicability to solitary waves. Recently, in [20], highly dispersive 
solitons, both dark and singular, have been successfully simulated using an enhancement of 
Adomian's technique. 

5. Numerical calculation and graphical representation of the results  
We will simulate the behavior of the solitons for the concatenation model using the approach 
described in the previous section. 

5.1. Bright soliton simulation 
Consider the coefficients of the concatenation model (1) reported in Table 1 for the simulations for 
the two cases presented the condition at time 0t   provided by:  

     0
1 1 .i xf x A sech B x e         (40) 

Figs. 1 and 2 show the results of simulations performed on the scenarios given in Table 1.  

Table 1. Parameters for bright soliton simulation. 

Cases a  b  1c  2c .  1σ  2σ  3σ  4σ  5σ  6σ  7σ  8σ  9σ  

1 

2 

1.1 

0.6 

0.2 

1.2 

9.2 

7.3 

0.6 

0.6 

4.3 

5.5 

-0.2 

0.8 

4.1 

2.5 

9.1 

0.7 

3.3 

3.5 

5.9 

7.0 

1.4 

2.2 

6.2 

3.3 

2.6 

5.5 
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(a)   (b) 

(c) 

Fig. 1. Profile of soliton's behavior  ,q x t  for 

the spatial variable  3,3x  , in relation to the 
parameters used in Case 1 (a). Error produced by 
LADM when the number of steps N=12 (b). 2D 
graph with  0,  0.5,t t   and 1t   (c). 

(a)   (b) 

 (c) 

Fig. 2. Profile of Soliton's behavior behavior 
 ,q x t  for the spatial variable  3,3x  , in 

relation to the parameters used in Case 2 (a). 
Error produced by LADM when the number of 
steps N=12 (b). 2D graph with 0,  0.5,t t   
and 1t   (c). 

5.2. Dark soliton simulation 
Consider the coefficients of the concatenation model (1) reported in Table 2 for the simulations for 
the two cases of the condition at time t = 0 provided by 

     0
2 2 ta .nh i xf x A B x e          (41) 
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Fig. 3 and 4 show the results of simulations performed on the scenarios given in Table 2. 

Table 2. Parameters for dark soliton simulation. 
Cases a  b  1c  2c .  1σ  2σ  3σ  4σ  5σ  6σ  7σ  8σ  9σ  

3 
4 

2.2 
7.5 

0.8 
1.6 

-0.2 
-8.2 

0.3 
3.3 

3.3 
0.4 

4.2 
3.8 

2.4 
0.2 

0.5 
1.1 

7.2 
0.8 

0.9 
1.8 

2.4 
5.6 

5.5 
2.9 

1.9 
6.4 

(a)  (b) 

(c) 

Fig. 3. Profile of Soliton's behavior behavior 
 ,q x t  for the spatial variable  3,3x  , in 

relation to the parameters used in Case 3 (a). 
Error produced by LADM when the number of 
steps N=12 (b). 2D graph with  0,  0.5,t t   and 

1t    (c). 

 (a)  (b) 

(c) 

Fig. 4. Profile of Soliton's behavior  ,q x t  for the 

spatial variable  3,3x  , in relation to the 
parameters used in Case 4 (a). Error produced by 
LADM when the number of steps N=12 (b). 2D graph 
with  0,  0.5,t t   and 1t    (c). 
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6. Conclusions 
The current paper studied the newly established concatenation model numerically by the LADM 
scheme. The surface plots and the error plots displayed the efficiency of the scheme. The scheme 
shows that the error is infinitesimally small for both bright and dark solitons. The results thus pave 
many ways for additional analysis of this model. Later additional numerical schemes will be 
implemented to handle the model. Some such proposed methods are the finite element method, 
finite difference scheme, improved Adomian decomposition scheme, numerical methods, 
boundary element method, and many others. The dynamical system of soliton parameters will also 
be displayed using the collective variables approach [11]. The results of such schemes will be 
disseminated with time. 
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Анотація. В цій статті чисельно отримані яскраві та темні 1-солітонні розв’язки для 
новоствореної моделі конкатенації з використанням техніки декомпозиції Лапласа-
Адоміана. Також проведений аналіз похибок, які становлять порядку 10-9. Для яскравих і 
темних солітонів представлені їхні графіки поверхонь, розрізів і похибок. 

Ключові слова: солітони; модель конкатенації; многочлени Адоміана 


