Ukrainian Journal of Physical Optics
2022 Volume 23, Issue 4
Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme
A. A. Al Qarni, A. M. Bodaqah, A. S. H. F. Mohammed, A. A. Alshaery, H. O. Bakodah and A. Biswas
Department of Mathematics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia, aqarny@ub.edu.sa Department of Mathematics, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah, Saudi Arabia. Department of Mathematics and Physics, Grambling State University, Grambling, LA-71245, USA. Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia. Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati-800201, Romania. Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa-0204, South Africa.
Ukr. J. Phys. Opt.
Vol. 23
,
Issue 4 , pp. 228 - 242 (2022).
doi:10.3116/16091833/23/4/228/2022
ABSTRACT
Keywords:
optical solitons, Lakshmanan-Porsezian-Daniel model, Kerr-law nonlinearity, improved Adomian decomposition method
UDC:
535.32
- Seadawy A R and Lu D, 2017. Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Res. Phys. 7: 43-48. doi:10.1016/j.rinp.2016.11.038
- Justin M, Hubert M B, Betchewe G, Doka S Y and Crepin K T, 2018. Chirped solitons in derivative nonlinear Schrödinger equation. Chaos, Solitons & Fractals. 107: 49-54. doi:10.1016/j.chaos.2017.12.010
- Bansal A, Biswas A, Zhou Q and Babatin M M, 2018. Lie symmetry analysis for cubic-quartic nonlinear Schrödinger's equation. Optik. 169: 12-15. doi:10.1016/j.ijleo.2018.05.030
- Russell J S. Report on waves. Made to the Meetings of the British Association in 1842-43. Print Book, English, 1845.
- Asghar Ali, Aly R Seadawy and Dianchen Lu, 2018. New solitary wave solution of some nonlinear models and their applications. Adv. Diff. Equations. 232: 1687-7. doi:10.1186/s13662-018-1687-7
- Biswas A, Triki H, Zhou Q, Moshokoa S P, Ullah M Z and Belic M, 2017. Cubic-quartic optical solitons in Kerr and power law media. Optik. 144: 357-362. doi:10.1016/j.ijleo.2017.07.008
- Biswas A, Ullah M Z, Zhou Q, Moshokoa S P and Triki H, Belic M, 2017. Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik. 145: 18-21. doi:10.1016/j.ijleo.2017.07.028
- Bansal A, Biswas A, Zhou Q and Babatin M M, 2018. Lie symmetry analysis for cubic-quartic nonlinear Schrödinger's equation. Optik. 169: 12-15. doi:10.1016/j.ijleo.2018.05.030
- Biswas A, Ekici M, Sonmezoglu A and Belic M R, 2019. Highly dispersive optical solitons with quadratic-cubic law by exp-function. Optik. 186: 431-435. doi:10.1016/j.ijleo.2019.04.058
- Blanco-Redondo A, De Sterke C M, Sipe J E, Krauss T F, Eggleton B J and Husko C, 2016. Pure-quartic solitons. Nature Commun. 7: 1-9. doi:10.1038/ncomms10427
- Lakshmanan M, Porsezian K and Daniel M, 1988. Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A. 133: 483-488. doi:10.1016/0375-9601(88)90520-8
- Kumar S, Biswas A, Zhou Q, Yıldırım Y, Alshehri H M and Belic M R, 2021. Straddled optical solitons for cubic-quartic Lakshmanan-Porsezian-Daniel model by Lie symmetry. Phys. Lett. A. 417: 127706. doi:10.1016/j.physleta.2021.127706
- Biswas A, Dakova A, Khan S, Ekici M, Moraru L and Belic M R, 2021. Cubic-quartic optical soliton perturbation with Fokas-Lenells equation by semi-inverse variation. Semicond. Phys. Quant. Electron. Optoelectron. 24: 431-435.
- Zayed E M, Nofal T A, Gepreel K A, Shohib R and Alngar M E, 2021. Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model. Optik. 233: 166385. doi:10.1016/j.ijleo.2021.166385
- Gepreel K A, Nofal T A and Althobaiti A A, 2012. The modified rational Jacobi elliptic functions method for nonlinear differential difference equations. J. Appl. Math. 2012: 427479.
- Islam M E, Khan K, Akbar M A and Islam R, 2013. Traveling wave solution of nonlinear evolution equation via exp(-()) - expansion method. Gl. J. Sci. Front. Res. Dec. Sci. 13: 1-10.
- Raslan K R, Khalid K A and Shallal M A, 2017. The modified extended tanh method with the Riccati equation for solving the space-time fractional EW and MEW equations. Chaos, Solitons & Fractals. 103: 404-409. doi:10.1016/j.chaos.2017.06.029
- Nuruddeen R I and Nass A M, 2018. Exact solitary wave solution for the fractional and classical GEW-Burgers equations: an application of Kudryashov method. Taibah Uni. J. Sci. 12: 309-314. doi:10.1080/16583655.2018.1469283
- Islam M T, Akbar M A and Azad M A K, 2015. A rational (G'/G)-expansion method and its application to modified KdV-Burgers equation and the (2+1)-dimensional Boussineq equation. Nonlin. Stud. 6: 1-11.
- Gepreel K A and Althobaiti A A, 2014. Exact solutions of nonlinear partial fractional differential equations using fractional sub-equations method. Indian J. Phys. 88: 293-300. doi:10.1007/s12648-013-0407-0
- Althobaiti A, Althobaiti S, El-Rashidy K and Seadawy A R, 2021. Exact solutions for the nonlinear extended KdV equation in a stratified shear flow using modified exponential rational method. Res. Phys. 29: 104723. doi:10.1016/j.rinp.2021.104723
- Mahak N, Akram G, 2020. The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity. Optik. 207: 164467. doi:10.1016/j.ijleo.2020.164467
- Nuruddeen R I, 2018. Multiple soliton solutions for the (3+1) conformable space-time fractional modified Korteweg-de-Vries equations, Ocean J. Eng. Sci. 3: 11-18. doi:10.1016/j.joes.2017.11.004
- Nuruddeen R I, Aboodh K S and Khalid K A, 2018. Analytical investigation of soliton solutions to three quantum Zakharov-Kuznetsov equations. Commun. Theor. Phys. 70: 405-412. doi:10.1088/0253-6102/70/4/405
- Cattani C, Sulaiman T A, Baskonus H M and Bulut H, 2018. On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel'd-Sokolov systems. Opt. Quant. Electron. 50: 138. doi:10.1007/s11082-018-1406-3
- Chen H T and Hong-Qing Z, 2004. New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation. Chaos Soliton & Fractals. 20: 765-769. doi:10.1016/j.chaos.2003.08.006
- Seadawy A R and Lu D, 2017. Bright and dark solitary wave soliton solutions for the generalized higher order nonlinear Schrodinger equation and its stability. Res. Phys. 7: 43-48. doi:10.1016/j.rinp.2016.11.038
- Islam M H, Khan K, Akbar M A and Salam M A, 2014. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation. Springer Plus. 3: 105. doi:10.1186/2193-1801-3-105
- Liu W, Zhang Y, Wazwaz A M and Zhou Q, 2019. Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber. Appl. Math. Comp. 361: 325-331. doi:10.1016/j.amc.2019.05.046
- Guan X, Liu W, Zhou Q and Biswas A, 2020. Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Comp. 366: 124757. doi:10.1016/j.amc.2019.124757
- Adomian G. Nonlinear stochastic operator equations. San Diego: Academic Press, 1986. doi:10.1016/B978-0-12-044375-8.50012-5
- Adomian G. Solving frontier problems of physics. The decomposition method. Boston: Kluwer Academic Publishers, 1994. doi:10.1007/978-94-015-8289-6
- Gepreel K A, Nofal T A and Althobaiti A A, 2014. Numerical solutions of the nonlinear partial fractional Zakharov-Kuznetsov equations with time and space fractional, Sci. Res.Ess. 9: 471-482. doi:10.5897/SRE2013.5769
- Shakhanda R, Goswami P and He J-H and Althobaiti A, 2021. An approximate solution of the time-fractional two-mode coupled Burgers equations. Fractal and Fractional. 5: 196. doi:10.3390/fractalfract5040196
- Cherruault Y, 1990. Convergence of Adomian's methods. Math. Comp. Model. 14: 83-86. doi:10.1016/0895-7177(90)90152-D
- Cherruault Y and Adomian G, 1993. Decomposition methods: a new proof of convergence, Math. Comp. Model. 18: 103-106. doi:10.1016/0895-7177(93)90233-O
- Al Qarni A A, Banaja M A and Bakodah H O, 2015. Numerical analyses optical solitons in dual core couplers with Kerr law nonlinearity. Appl. Math. 6: 1957-1967. doi:10.4236/am.2015.612173
- Banaja MA, AlQarni AA, Bakodah HO, Zhou Qin, Moshokoa Seithuti P., Biswas Anjan, 2017. The investigate of optical solitons in cascaded system by improved adomian decomposition scheme. Optik, 130: 1107-1114. doi:10.1016/j.ijleo.2016.11.125
- Mohammed A S H F and Bakodah H O, 2020. Numerical investigation of the Adomian-based methods with w-shaped optical solitons of Chen-Lee-Liu equation. Phys. Scripta. 96: 035206. doi:10.1088/1402-4896/abd0bb
- Mohammed A S H F and Bakodah H O, 2021. Approximate solutions for dark and singular optical solitons of Chen-Lee-Liu Model by Adomian-based methods. Int. J. Appl. Comp. Math. 7: 1-12. doi:10.1007/s40819-021-01035-0
- Al-Qarni A A, Bakodah H O, Alshaery A A, Biswas A, Yildirim Y, Moraru L and Moldovanu S, 2022. Numerical simulation of cubic-quartic optical solitons with Perturbed Fokas-Lenells equation using improved Adomian decomposition algorithm. Mathematics. 10: 138. doi:10.3390/math10010138
- Vega-Guzman J, Biswas A, Kara A H, Mahmood M F, Ekici M, Alshehri H M and Belic M R, 2021. Cubic-quartic optical soliton perturbation and conservation laws with Lakshmanan-Porsezian-Daniel model: undetermined coefficients. J. Nonlin. Opt. Phys. Math. 30: 2150007. doi:10.1142/S0218863521500077
-
Досліджено клас рівнянь Лакшманана–Порсезіана–Даніеля, наділених кубічно-квартичною нелінійністю. В отриманні узагальненої числового підходу використано високоефективну покращену схему розкладання Адоміана. Наші чисельні результати виявляють ідеальну згоду з аналітичними рішеннями для оптики, відомими з літератури. Іншими словами, наш метод забезпечує вражаючий рівень точності та надійності.
Ключові слова: оптичні солітони, модель Лакшманана–Порсезіана–Даніеля, керрівська нелінійність, покращений метод розкладання Адоміана
© Ukrainian Journal of Physical Optics ©