Ukrainian Journal of Physical Optics


2022, Volume 23, Issue 1


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Optical solitons in the Sasa–Satsuma model with multiplicative noise via Itô calculus

1Elsayed M. E. Zayed, 1Reham M. A. Shohib, 1Mohamed E. M. Alngar, 2,3,4,5Anjan Biswas, 6Yakup Yıldırım, 7,8Anelia Dakova, 2Hashim M. Alshehri and 9Milivoj R. Belic

1Mathematics Department, Faculty of Sciences, Zagazig University, Zagazig–44519, Egypt
2Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia
3Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati–800201, Romania
4Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa–0204, Pretoria, South Africa
5Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762–4900, USA
6Department of Mathematics, Faculty of Arts and Sciences, Near East University, 99138 Nicosia, Cyprus
7Physics and Technology Faculty, University of Plovdiv “Paisii Hilendarski”, 24 Tsar Asen Street, 4000 Plovdiv, Bulgaria
8Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Shossee, 1784 Sofia, Bulgaria
9Institute of Physics Belgrade, Pregrevica 118, 11080 Zemun, Serbia

ABSTRACT

We study for the first time perturbed optical solitons modelled using a Sasa–Satsuma equation involving a multiplicative noise. Two integration schemes retrieve soliton solutions to this model, which are described using parametric constraints.

Keywords: solitons, multiplicative noise, Itô calculus
UDC: 535.32

    1. Albosaily S, Mohammed W W, Aiyashi M A and Abdelrahman A A E, 2020. Exact solutions of the (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation. Symmetry. 12: 1874-1886. doi:10.3390/sym12111874
    2. Mohammed W W and El-Morshedy M, 2021. The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik-Novikov-Veselov system. Math. Comput. Simul. 190: 192-202. doi:10.1016/j.matcom.2021.05.022
    3. Mohammed W W, Albosaily S, Iqbal N and El-Morshedy M, 2021. The effect of multiplicative noise on the exact solutions of the stochastic Burger equation. Waves Random Complex Media. 10.1080/17455030.2021.1905914. doi:10.1080/17455030.2021.1905914
    4. Bandelow U and Akhmediev N, 2012. Sasa-Satsuma equation: soliton on a background and its limiting cases. Phys. Rev. E. 86: 026606. doi:10.1103/PhysRevE.86.026606
    5. Gonzalez-Gaxiola O, Biswas A, Ekici M and Alshomrani A S, 2021. Optical solitons with Sasa-Satsuma equation by Laplace-Adomian decomposition algorithm. Optik. 229: 166262. doi:10.1016/j.ijleo.2021.166262
    6. Kudryashov N A, 2021. Solitary waves of the generalized Sasa-Satsuma equation with arbitrary refractive index. Optik. 232: 166540. doi:10.1016/j.ijleo.2021.166540
    7. Sun F, 2021. Optical solutions of Sasa-Satsuma equation in optical fibers. Optik. 228: 166127. doi:10.1016/j.ijleo.2020.166127
    8. Xu J and Fan E, 2013. The unified transform method for the Sasa-Satsuma equation on the half-line. Proc. Roy. Soc. A. 469: 20130068. doi:10.1098/rspa.2013.0068
    9. Abdelrahman M A E, Mohammed W W, Alesemi M and Albosaily S, 2021. The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation. AIMS Math. 6: 2970-2980. doi:10.3934/math.2021180
    10. Mohammed W W, Ahmad H, Boulares H, Khelifi F and El-Morshedy M, 2021. Exact solutions of Hirota-Maccari system forced by multiplicative noise in the Itô sense. J. Low Freq. Noise Vib. Act. Control. 10.1177/14613484211028100. doi:10.1177/14613484211028100
    АНОТАЦІЯ. Ми вперше дослідили збурені оптичні солітони, змодельовані в рамках рівняння Саса–Сацуми, яке містить мультиплікативний шум. Для двох схем інтегрування одержано солітонні розв’язки моделі, які описано за допомогою параметричних обмежень.

    Ключові слова: солітони, мультиплікативний шум, обчислення Іто.

© Ukrainian Journal of Physical Optics ©