Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 3


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

ENHANCING MAPbI3 PEROVSKITE SOLAR CELL PERFORMANCE USING WS2 AS AN ELECTRON TRANSPORT LAYER

M. Moustafa, A. Abd El-Samad, H. H. Zeenelabden, Z. Abu Waar and M. Swillam


ABSTRACT

Planar perovskite solar cells (PSCs) have surfaced as a promising photovoltaic technology due to their potential for low-temperature processing and streamlined fabrication. A key factor in enhancing the performance of planar PSCs is the electron transport layer (ETL). This study explores the use of WS2, a transition metal dichalcogenide (TMDC), as an alternative ETL in the methylammonium lead iodide (MAPbI3) active layer planner n-i-p structured perovskite solar cells. Numerical investigation using wxAMPS software evaluates the feasibility of WS2 as a replacement for conventional ETLs, addressing challenges related to toxicity and stability. To optimize device performance, comprehensive simulations analyze the effects of various parameters, including ETL thickness, hole transport layer, absorber layer, doping concentration, defect density, and bandgap. The optimal thickness and the band gap value of the WS2 ETL layer have been reported to be 150 nm and 1.8 eV, respectively. The optimized configuration achieves performance metrics as follows: a power conversion efficiency of 26.34%, a fill factor of 82.84%, a short-circuit current density of 22.7 mA/cm2 and an open-circuit voltage of 1.41 V. These results underscore the potential of WS2 TMDC- ETLs for high-efficiency PSCs, paving the way for practical applications following experimental validation.

Keywords: solitons, algebraic method, cnoidal waves

UDC: 535.2, 620

    1. Shah, A. U. I., & Meyer, E. L. (2025). Perovskite-based solar cells in photovoltaics for commercial scalability: Current progress, challenges, mitigations and future prospectus. Solar Energy, 286, 113172.
      doi:10.1016/j.solener.2024.113172
    2. Tennyson, E. M., Doherty, T. A., & Stranks, S. D. (2019). Heterogeneity at multiple length scales in halide perovskite semiconductors. Nature Reviews Materials, 4(9), 573-587.
      doi:10.1038/s41578-019-0125-0
    3. Zheng, D., Wang, G., Huang, W., Wang, B., Ke, W., Logsdon, J. L., Wang, H., Wang, Z., Zhu, W., Yu, J., Wasielewski, M.R., Kanatzidis, M.G., Marks, T.J., & Facchetti, A. (2019). Combustion synthesized zinc oxide electron‐transport layers for efficient and stable perovskite solar cells. Advanced Functional Materials, 29(16), 1900265.
      doi:10.1002/adfm.201900265
    4. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., HONG, Z., YOU, J., LIU, Yo. & Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546.
      doi:10.1126/science.1254050
    5. Wang, J. T. W., Wang, Z., Pathak, S., Zhang, W., deQuilettes, D. W., Wisnivesky-Rocca-Rivarola, F., Huang, J., Nayak, P.K., Patel, J.B., Mohd Yusof, H.A., Vaynzof, Y., Zhu, R., Ramirez, I., Zhang, J., Ducati, C., Grovenor, C., Johnston, M.B., Ginger, D.S., Nicholas R.J.& Snaith, H. J. (2016). Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 9(9), 2892-2901.
      doi:10.1039/C6EE01969B
    6. Liu, P., Wang, W., Liu, S., Yang, H., & Shao, Z. (2019). Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Advanced Energy Materials, 9(13), 1803017.
      doi:10.1002/aenm.201803017
    7. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
      doi:10.1021/ja809598r
    8. Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., . Ye, Q., Li, X., Yin Z. & You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466.
      doi:10.1038/s41566-019-0398-2
    9. Kim, M., Kim, G. H., Lee, T. K., Choi, I. W., Choi, H. W., Jo, Y., Yoon, Y.J., Kim, J.W., Lee, J., Huh, D., Lee, H., Kwak, S.K., Kim, J.Y. & Kim, D. S. (2019). Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3(9), 2179-2192.
      doi:10.1016/j.joule.2019.06.014
    10. Green, M., Dunlop, E., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 29(1), 3-15.
      doi:10.1002/pip.3371
    11. Hu, Q., Rezaee, E., Dong, L., Dong, Q., Shan, H., Chen, Q., Li, M., Cai, S., Wang, L. & Xu, Z. X. (2019). Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopant‐Free Hole‐Transporting Material of Planar Perovskite Solar Cell with Preferential Face‐on Orientation. Solar RRL, 3(11), 1900182.
      doi:10.1002/solr.201900182
    12. Yang, G., Tao, H., Qin, P., Ke, W., & Fang, G. (2016). Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 4(11), 3970-3990.
      doi:10.1039/C5TA09011C
    13. Yu, Z., Zhang, L., Tian, S., Zhang, F., Zhang, B., Niu, F., Zeng, P., Qu, J., Rudd, P.N., Huang, J. & Lian, J. (2018). Hot‐substrate deposition of hole‐and electron‐transport layers for enhanced performance in perovskite solar cells. Advanced Energy Materials, 8(2), 1701659.
      doi:10.1002/aenm.201701659
    14. Jena, A. K., Kulkarni, A., & Miyasaka, T. (2019). Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 119(5), 3036-3103.
      doi:10.1021/acs.chemrev.8b00539
    15. Dubey, A., Adhikari, N., Mabrouk, S., Wu, F., Chen, K., Yang, S., & Qiao, Q. (2018). A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, 6(6), 2406-2431.
      doi:10.1039/C7TA08277K
    16. Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A. K., Liu, B., . Md. Nazeeruddin, K.& Grätzel, M. (2012). Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 134(42), 17396-17399.
      doi:10.1021/ja307789s
    17. Cui, P., Wei, D., Ji, J., Huang, H., Jia, E., Dou, S., Wang, T., Wang, W. & Li, M. (2019). Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nature Energy, 4(2), 150-159.
      doi:10.1038/s41560-018-0324-8
    18. Wang, Y., Arandiyan, H., Scott, J., Bagheri, A., Dai, H., & Amal, R. (2017). Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. Journal of Materials Chemistry A, 5(19), 8825-8846.
      doi:10.1039/C6TA10896B
    19. Liu, X., Zhu, G., Wang, X., Yuan, X., Lin, T., & Huang, F. (2016). Progress in black titania: a new material for advanced photocatalysis. Advanced Energy Materials, 6(17), 1600452.
      doi:10.1002/aenm.201600452
    20. Lian, J., Lu, B., Niu, F., Zeng, P., & Zhan, X. (2018). Electron‐transport materials in perovskite solar cells. Small Methods, 2(10), 1800082.
      doi:10.1002/smtd.201800082
    21. Qiu, L., Ono, L. K., Jiang, Y., Leyden, M. R., Raga, S. R., Wang, S., & Qi, Y. (2017). Engineering interface structure to improve efficiency and stability of organometal halide perovskite solar cells. The Journal of Physical Chemistry B, 122(2), 511-520.
      doi:10.1021/acs.jpcb.7b03921
    22. Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Xingwang Zhang. & You, J. (2016). Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2(1), 1-7.
      doi:10.1038/nenergy.2016.177
    23. Tang, H., Cao, Q., He, Z., Wang, S., Han, J., Li, T., . Gao, B., Yang, J., Deng, D. & Li, X. (2020). SnO2-Carbon nanotubes hybrid electron transport layer for efficient and hysteresis‐free planar perovskite solar cells. Solar RRL, 4(1), 1900415.
      doi:10.1002/solr.201900415
    24. Dong, Q., Shi, Y., Zhang, C., Wu, Y., & Wang, L. (2017). Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy, 40, 336-344.
      doi:10.1016/j.nanoen.2017.08.041
    25. Fu, Q., Tang, X., Huang, B., Hu, T., Tan, L., Chen, L., & Chen, Y. (2018). Recent progress on the long‐term stability of perovskite solar cells. Advanced Science, 5(5), 1700387.
      doi:10.1002/advs.201700387
    26. Aydin, E., De Bastiani, M., & De Wolf, S. (2019). Defect and contact passivation for perovskite solar cells. Advanced Materials, 31(25), 1900428.
      doi:10.1002/adma.201900428
    27. Bu, T., Li, J., Zheng, F., Chen, W., Wen, X., Ku, Z., . Peng, Y., Zhong, J., Cheng Y-B. & Huang, F. (2018). Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 9(1), 4609.
      doi:10.1038/s41467-018-07099-9
    28. Zhu, Z., Bai, Y., Liu, X., Chueh, C. C., Yang, S., & Jen, A. K. Y. (2016). Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron‐transporting layer. Advanced Materials, 28(30), 6478-6484.
      doi:10.1002/adma.201600619
    29. Xie, J., Huang, K., Yu, X., Yang, Z., Xiao, K., Qiang, Y., . Zhu, X. Xu, L., Wang, P., Cui C. & Yang, D. (2017). Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano, 11(9), 9176-9182.
      doi:10.1021/acsnano.7b04070
    30. Yang, G., Chen, C., Yao, F., Chen, Z., Zhang, Q., Zheng, X., . Zheng, X., Ma, J., Lei, H., Qin, P., Xiong, L., Ke, W., Li, G., Yan Y. & Fang, G. (2018). Effective carrier‐concentration tuning of SnO2 quantum dot electron‐selective layers for high‐performance planar perovskite solar cells. Advanced Materials, 30(14), 1706023.
      doi:10.1002/adma.201706023
    31. Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya S. & Liu, S. (2018). High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 9(1), 3239.
      doi:10.1038/s41467-018-05760-x
    32. Ke, W., Zhao, D., Xiao, C., Wang, C., Cimaroli, A. J., Grice, C. R., Yang, M., Li, Z., Jiang, C-S., Al-Jassim, M., Zhu, K., Kanatzidis, M.G., Fang, G. & Yan, Y. (2016). Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 4(37), 14276-14283.
      doi:10.1039/C6TA05095F
    33. Bu, T., Liu, X., Zhou, Y., Yi, J., Huang, X., Luo, L., . Xiao, J., Ku, Z., Peng, Y., Huang, F., Cheng, Y-B. & Zhong, J. (2017). A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 10(12), 2509-2515.
      doi:10.1039/C7EE02634J
    34. Peng, J., Khan, J. I., Liu, W., Ugur, E., Duong, T., Wu, Y., Shen, H., Wang, K., Dang, H., Aydin, E., Yang, X., Wan, Y., Weber, K.J., Catchpole, K.R., Laquai, F., De Wolf, S. & White, T. P. (2018). A universal double‐side passivation for high open‐circuit voltage in perovskite solar cells: role of carbonyl groups in poly (methyl methacrylate). Advanced Energy Materials, 8(30), 1801208.
      doi:10.1002/aenm.201801208
    35. Zhu, P., Gu, S., Luo, X., Gao, Y., Li, S., Zhu, J., & Tan, H. (2020). Simultaneous contact and grain‐boundary passivation in planar perovskite solar cells using SnO2‐KCl composite electron transport layer. Advanced Energy Materials, 10(3), 1903083.
      doi:10.1002/aenm.201903083
    36. Li, F., Shen, Z., Weng, Y., Lou, Q., Chen, C., Shen, L., . Shen, L., Guo, W., & Li, G. (2020). Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long‐term stability. Advanced Functional Materials, 30(45), 2004933.
      doi:10.1002/adfm.202004933
    37. Huang, L., Krasnok, A., Alú, A., Yu, Y., Neshev, D., & Miroshnichenko, A. E. (2022). Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics, 85(4), 046401.
      doi:10.1088/1361-6633/ac45f9
    38. Zhang, H., Chhowalla, M., & Liu, Z. (2018). 2D nanomaterials: graphene and transition metal dichalcogenides. Chemical Society Reviews, 47(9), 3015-3017.
      doi:10.1039/C8CS90048E
    39. Kumar, A., & Ahluwalia, P. K. (2013). Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M= Mo, W; X= S, Se, Te). Modelling and Simulation in Materials Science and Engineering, 21(6), 065015.
      doi:10.1088/0965-0393/21/6/065015
    40. Ramasubramaniam, A., Naveh, D., & Towe, E. (2011). Tunable band gaps in bilayer transition-metal dichalcogenides. Physical Review B - Condensed Matter and Materials Physics, 84(20), 205325.
      doi:10.1103/PhysRevB.84.205325
    41. Mu, X., & Sun, M. (2020). Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Applied Physics Letters, 117(9).
      doi:10.1063/5.0018854
    42. Engel, J., Francis, S., & Roldan, A. (2019). The influence of support materials on the structural and electronic properties of gold nanoparticles-a DFT study. Physical Chemistry Chemical Physics, 21(35), 19011-19025.
      doi:10.1039/C9CP03066B
    43. Xia, C., Xiong, W., Du, J., Wang, T., Peng, Y., Wei, Z., . Li, J. & Jia, Y. (2018). Type‐I Transition Metal Dichalcogenides Lateral Homojunctions: Layer Thickness and External Electric Field Effects. Small, 14(21), 1800365.
      doi:10.1002/smll.201800365
    44. Dasgupta, U., Chatterjee, S., & Pal, A. J. (2017). Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 172, 353-360.
      doi:10.1016/j.solmat.2017.08.012
    45. Huang, P., Wang, Z., Liu, Y., Zhang, K., Yuan, L., Zhou, Y., Song, B. & Li, Y. (2017). Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells. ACS Applied Materials & Interfaces, 9(30), 25323-25331.
      doi:10.1021/acsami.7b06403
    46. Liu, J., Zhuang, D., Luan, H., Cao, M., Xie, M., & Li, X. (2013). Preparation of Cu(In,Ga)Se2 thin film by sputtering from Cu(In, Ga)Se2 quaternary target. Progress in Natural Science: Materials International, 23(2), 133-138.
      doi:10.1016/j.pnsc.2013.02.006
    47. Liu, J., Zhuang, D. M., Cao, M. J., Li, X. L., Xie, M., & Xu, D. W. (2014). Cu(In,Ga)Se2 -based solar cells prepared from Se-containing precursors. Vacuum, 102, 26-30.
      doi:10.1016/j.vacuum.2013.10.007
    48. Li, S., Chen, Z., & Zhang, W. (2012). Dye-sensitized solar cells based on WS2 counter electrodes. Materials Letters, 72, 22-24.
      doi:10.1016/j.matlet.2011.12.052
    49. Hankare, P. P., Manikshete, A. H., Sathe, D. J., Chate, P. A., Patil, A. A., & Garadkar, K. M. (2009). WS2 thin films: Opto-electronic characterization. Journal of Alloys and Compounds, 479(1-2), 657-660.
      doi:10.1016/j.jallcom.2009.01.024
    50. Gourmelon, E., Lignier, O., Hadouda, H., Couturier, G., Bernede, J. C., Tedd, J., Pouzet, J. & Salardenne, J. (1997). MS2 (M= W, Mo) photosensitive thin films for solar cells. Solar Energy Materials and Solar Cells, 46(2), 115-121.
      doi:10.1016/S0927-0248(96)00096-7
    51. Lignier, O., Couturier, G., Tedd, J., Gonbeau, D., & Salardenne, J. (1997). Photoactivity enhancement of WS2 sputtered thin films by use of nickel. Thin Solid Films, 299(1-2), 45-52.
      doi:10.1016/S0040-6090(96)09319-4
    52. Sobayel, K., Akhtaruzzaman, M., Rahman, K. S., Ferdaous, M. T., Al-Mutairi, Z. A., Alharbi, H. F., Alharthi, N.H., Karim, M.R., Hasmady, S. & Amin, N. (2019). A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results in Physics, 12, 1097-1103.
      doi:10.1016/j.rinp.2018.12.049
    53. Rosman, N. N., Yunus, R. M., Minggu, L. J., Arifin, K., Salehmin, M. N. I., Mohamed, M. A., & Kassim, M. B. (2018). Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: an overview. International Journal of Hydrogen Energy, 43(41), 18925-18945.
      doi:10.1016/j.ijhydene.2018.08.126
    54. You, P., Tang, G., & Yan, F. (2019). Two-dimensional materials in perovskite solar cells. Materials Today Energy, 11, 128-158.
      doi:10.1016/j.mtener.2018.11.006
    55. Bhujbal, P. K., Sakunde, B., Supekar, A., Bh, H., Saini, S., Dhirhe, D., . Patole, S.P. & Pathan, H. M. (2024). Unlocking the potential of WS2 as an electron transport layer in lead-free methylammonium tin iodide-based perovskite solar cells: a comprehensive defect study using the SCAPS-1D framework. ES Energy & Environment, 26, 1225.
      doi:10.30919/esee1225
    56. Liu, Y., Sun, Y., & Rockett, A. (2012). A new simulation software of solar cells-wxAMPS. Solar Energy Materials and Solar Cells, 98, 124-128.
      doi:10.1016/j.solmat.2011.10.010
    57. Liu, Y., Heinzel, D., & Rockett, A. (2011, June). A new solar cell simulator: WxAMPS. In 2011 37th IEEE Photovoltaic Specialists Conference (pp. 002753-002756). IEEE.
      doi:10.1109/PVSC.2011.6186517
    58. Liu, Y., Sun, Y., & Rockett, A. (2012, June). Batch simulation of solar cells by using Matlab and wxAMPS. In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 000902-000905). IEEE.
      doi:10.1109/PVSC.2012.6317748
    59. Liu, Y., Heinzel, D., & Rockett, A. (2010, June). A revised version of the AMPS simulation code. In 2010 35th IEEE Photovoltaic Specialists Conference (pp. 001943-001947). IEEE.
      doi:10.1109/PVSC.2010.5616225
    60. Anwar, F. (2012). Numerical Modeling Of CdS/ZnXCd1-XTe Solar Cell.
    61. Hossain, M. K., Toki, G. I., Kuddus, A., Mohammed, M. K., Pandey, R., Madan, J., Bhattarai, S., Md. Rahman, F., Dwivedi, D.K., Amami, M., Bencherif, H.& Samajdar, D. P. (2023). Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: a combination of SCAPS-1D and wxAMPS study. Materials Chemistry and Physics, 308, 128281.
      doi:10.1016/j.matchemphys.2023.128281
    62. Azri, F., Meftah, A., Sengouga, N., & Meftah, A. (2019). Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Solar Energy, 181, 372-378.
      doi:10.1016/j.solener.2019.02.017
    63. Elseman, A. M., Shalan, A. E., Rashad, M. M., & Hassan, A. M. (2017). Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Materials Science in Semiconductor Processing, 66, 176-185.
      doi:10.1016/j.mssp.2017.04.022
    64. Abd El-Samad, A. E., Gad, N., El-Aasser, M., Rashad, M. M., & Elseman, A. M. (2022). Optoelectronic investigation and simulation study of zinc and cobalt doped lead halide perovskite nanocrystals. Solar Energy, 247, 553-563.
      doi:10.1016/j.solener.2022.10.061
    65. Moustafa, M., Al Zoubi, T., & Yasin, S. (2022). Optoelectronics Simulation of CIGS-Based Solar Cells Using a Cd-Free Nontoxic ZrSxSe2−x as a Novel Buffer Layer. Brazilian Journal of Physics, 52(4), 141.
      doi:10.1007/s13538-022-01146-z
    66. Moustafa, M., Mourched, B., Salem, S., & Yasin, S. (2023). Performance enhancement of CZTS-based solar cells with tungsten disulfide as a new buffer layer. Solid State Communications, 359, 115007.
      doi:10.1016/j.ssc.2022.115007
    67. Moiz, S. A. (2021, December). Optimization of hole and electron transport layer for highly efficient lead-free Cs2TiBr6-based perovskite solar cell. In Photonics (Vol. 9, No. 1, p. 23). MDPI.
      doi:10.3390/photonics9010023
    68. Ahmed, A., Riaz, K., Mehmood, H., Tauqeer, T., & Ahmad, Z. (2020). Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Optical Materials, 105, 109897.
      doi:10.1016/j.optmat.2020.109897
    69. Jeyakumar, R., Bag, A., Nekovei, R., & Radhakrishnan, R. (2020). Influence of electron transport layer (TiO2) thickness and its doping density on the performance of CH3NH3PbI3-based planar perovskite solar cells. Journal of Electronic Materials, 49(6), 3533-3539.
      doi:10.1007/s11664-020-08041-w
    70. Giordano, F., Abate, A., Correa Baena, J. P., Saliba, M., Matsui, T., Im, S. H., Zakeeruddin, S.M., Nazeeruddin, M.K., Hagfeldt, A. & Graetzel, M. (2016). Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications, 7(1), 10379.
      doi:10.1038/ncomms10379
    71. Sebastian, V., & Kurian, J. (2021). Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells. Solar Energy, 221, 99-108.
      doi:10.1016/j.solener.2021.04.030
    72. Liu, D., Gangishetty, M. K., & Kelly, T. L. (2014). Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2(46), 19873-19881.
      doi:10.1039/C4TA02637C
    73. Raj, A., Kumar, M., Bherwani, H., Gupta, A., & Anshul, A. (2021). Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation. Journal of Vacuum Science & Technology B, 39(1).
      doi:10.1116/6.0000718

    Планарні перовскітні сонячні елементи (PSC) стали перспективною фотоелектричною технологією завдяки можливості їхньої низькотемпературної обробки та спрощеного виготовлення. Ключовим фактором підвищення ефективності планарних PSC є шар транспортування електронів (ETL). У цьому дослідженні розглядається використання WS2, дихалькогеніду перехідного металу (TMDC), як альтернативного ETL у планарній структурі n-i-p перовскітних сонячних елементів на основі активного шару метиламоній свинцевого йодиду (MAPbI3). Доцільність застосування WS2 як заміни традиційних ETL, вирішуючи проблеми, пов’язані з токсичністю та стабільністю, оцінено чисельним моделюванням за допомогою програмного забезпечення wxAMPS. Для оптимізації продуктивності пристрою, на основі комплексного моделювання проаналовано вплив різних параметрів, включаючи товщину ETL, шар транспортування дірок, шар поглинача, концентрацію легування, щільність дефектів і заборонену зону.Оптимальна товщина шару WS2 ETL встановлена на рівні 150 нм, а ширина його забороненої зони – 1,8 еВ. Оптимізована конфігурація досягає таких показників ефективності: коефіцієнт перетворення енергії 26,34%, фактор заповнення 82,84%, густина струму короткого замикання 22,7 мА/см2 і напруга холостого ходу 1,41 В. Отримані результати підкреслюють потенціал WS2 TMDC-ETL для високоефективних PSC, відкриваючи можливості для практичного застосування після експериментальної перевірки.

    Ключові слова: дихалькогеніди перехідних металів, моделювання wxAMPS, перовскітні сонячні елементи, шар транспортування електронів


© Ukrainian Journal of Physical Optics ©