Ukrainian Journal of Physical Optics
2025 Volume 26, Issue 3
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

ENHANCING MAPbI3 PEROVSKITE SOLAR CELL PERFORMANCE USING WS2 AS AN ELECTRON TRANSPORT LAYER
M. Moustafa, A. Abd El-Samad, H. H. Zeenelabden, Z. Abu Waar and M. Swillam
Author Information
1,*M. Moustafa
, 1A. Abd El-Samad
,
1H. H. Zeenelabden
,
2Z. Abu Waar
,
1M. Swillam
1Department of Physics, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
2Department of Physics, College of Science, The University of Jordan, Amman, 11942, Jordan
*Corresponding Author: mohamed.orabi@aucegypt.edu





Ukr. J. Phys. Opt.
Vol. 26
,
Issue 3 , pp. 03027 - 03042 (2025).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2025.03027
ABSTRACT
Planar perovskite solar cells (PSCs) have surfaced as a promising photovoltaic technology due to their potential for low-temperature processing and streamlined fabrication. A key factor in enhancing the performance of planar PSCs is the electron transport layer (ETL). This study explores the use of WS2, a transition metal dichalcogenide (TMDC), as an alternative ETL in the methylammonium lead iodide (MAPbI3) active layer planner n-i-p structured perovskite solar cells. Numerical investigation using wxAMPS software evaluates the feasibility of WS2 as a replacement for conventional ETLs, addressing challenges related to toxicity and stability. To optimize device performance, comprehensive simulations analyze the effects of various parameters, including ETL thickness, hole transport layer, absorber layer, doping concentration, defect density, and bandgap. The optimal thickness and the band gap value of the WS2 ETL layer have been reported to be 150 nm and 1.8 eV, respectively. The optimized configuration achieves performance metrics as follows: a power conversion efficiency of 26.34%, a fill factor of 82.84%, a short-circuit current density of 22.7 mA/cm2 and an open-circuit voltage of 1.41 V. These results underscore the potential of WS2 TMDC- ETLs for high-efficiency PSCs, paving the way for practical applications following experimental validation.
Keywords:
solitons, algebraic method, cnoidal waves
UDC:
535.2, 620
- Shah, A. U. I., & Meyer, E. L. (2025). Perovskite-based solar cells in photovoltaics for commercial scalability: Current progress, challenges, mitigations and future prospectus. Solar Energy, 286, 113172.
doi:10.1016/j.solener.2024.113172 - Tennyson, E. M., Doherty, T. A., & Stranks, S. D. (2019). Heterogeneity at multiple length scales in halide perovskite semiconductors. Nature Reviews Materials, 4(9), 573-587.
doi:10.1038/s41578-019-0125-0 - Zheng, D., Wang, G., Huang, W., Wang, B., Ke, W., Logsdon, J. L., Wang, H., Wang, Z., Zhu, W., Yu, J., Wasielewski, M.R., Kanatzidis, M.G., Marks, T.J., & Facchetti, A. (2019). Combustion synthesized zinc oxide electron‐transport layers for efficient and stable perovskite solar cells. Advanced Functional Materials, 29(16), 1900265.
doi:10.1002/adfm.201900265 - Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., HONG, Z., YOU, J., LIU, Yo. & Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546.
doi:10.1126/science.1254050 - Wang, J. T. W., Wang, Z., Pathak, S., Zhang, W., deQuilettes, D. W., Wisnivesky-Rocca-Rivarola, F., Huang, J., Nayak, P.K., Patel, J.B., Mohd Yusof, H.A., Vaynzof, Y., Zhu, R., Ramirez, I., Zhang, J., Ducati, C., Grovenor, C., Johnston, M.B., Ginger, D.S., Nicholas R.J.& Snaith, H. J. (2016). Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 9(9), 2892-2901.
doi:10.1039/C6EE01969B - Liu, P., Wang, W., Liu, S., Yang, H., & Shao, Z. (2019). Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Advanced Energy Materials, 9(13), 1803017.
doi:10.1002/aenm.201803017 - Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
doi:10.1021/ja809598r - Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., . Ye, Q., Li, X., Yin Z. & You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466.
doi:10.1038/s41566-019-0398-2 - Kim, M., Kim, G. H., Lee, T. K., Choi, I. W., Choi, H. W., Jo, Y., Yoon, Y.J., Kim, J.W., Lee, J., Huh, D., Lee, H., Kwak, S.K., Kim, J.Y. & Kim, D. S. (2019). Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3(9), 2179-2192.
doi:10.1016/j.joule.2019.06.014 - Green, M., Dunlop, E., Hohl‐Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X. (2021). Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 29(1), 3-15.
doi:10.1002/pip.3371 - Hu, Q., Rezaee, E., Dong, L., Dong, Q., Shan, H., Chen, Q., Li, M., Cai, S., Wang, L. & Xu, Z. X. (2019). Molecularly Designed Zinc (II) Phthalocyanine Derivative as Dopant‐Free Hole‐Transporting Material of Planar Perovskite Solar Cell with Preferential Face‐on Orientation. Solar RRL, 3(11), 1900182.
doi:10.1002/solr.201900182 - Yang, G., Tao, H., Qin, P., Ke, W., & Fang, G. (2016). Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry A, 4(11), 3970-3990.
doi:10.1039/C5TA09011C - Yu, Z., Zhang, L., Tian, S., Zhang, F., Zhang, B., Niu, F., Zeng, P., Qu, J., Rudd, P.N., Huang, J. & Lian, J. (2018). Hot‐substrate deposition of hole‐and electron‐transport layers for enhanced performance in perovskite solar cells. Advanced Energy Materials, 8(2), 1701659.
doi:10.1002/aenm.201701659 - Jena, A. K., Kulkarni, A., & Miyasaka, T. (2019). Halide perovskite photovoltaics: background, status, and future prospects. Chemical Reviews, 119(5), 3036-3103.
doi:10.1021/acs.chemrev.8b00539 - Dubey, A., Adhikari, N., Mabrouk, S., Wu, F., Chen, K., Yang, S., & Qiao, Q. (2018). A strategic review on processing routes towards highly efficient perovskite solar cells. Journal of Materials Chemistry A, 6(6), 2406-2431.
doi:10.1039/C7TA08277K - Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A. K., Liu, B., . Md. Nazeeruddin, K.& Grätzel, M. (2012). Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 134(42), 17396-17399.
doi:10.1021/ja307789s - Cui, P., Wei, D., Ji, J., Huang, H., Jia, E., Dou, S., Wang, T., Wang, W. & Li, M. (2019). Planar p-n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nature Energy, 4(2), 150-159.
doi:10.1038/s41560-018-0324-8 - Wang, Y., Arandiyan, H., Scott, J., Bagheri, A., Dai, H., & Amal, R. (2017). Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. Journal of Materials Chemistry A, 5(19), 8825-8846.
doi:10.1039/C6TA10896B - Liu, X., Zhu, G., Wang, X., Yuan, X., Lin, T., & Huang, F. (2016). Progress in black titania: a new material for advanced photocatalysis. Advanced Energy Materials, 6(17), 1600452.
doi:10.1002/aenm.201600452 - Lian, J., Lu, B., Niu, F., Zeng, P., & Zhan, X. (2018). Electron‐transport materials in perovskite solar cells. Small Methods, 2(10), 1800082.
doi:10.1002/smtd.201800082 - Qiu, L., Ono, L. K., Jiang, Y., Leyden, M. R., Raga, S. R., Wang, S., & Qi, Y. (2017). Engineering interface structure to improve efficiency and stability of organometal halide perovskite solar cells. The Journal of Physical Chemistry B, 122(2), 511-520.
doi:10.1021/acs.jpcb.7b03921 - Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Xingwang Zhang. & You, J. (2016). Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nature Energy, 2(1), 1-7.
doi:10.1038/nenergy.2016.177 - Tang, H., Cao, Q., He, Z., Wang, S., Han, J., Li, T., . Gao, B., Yang, J., Deng, D. & Li, X. (2020). SnO2-Carbon nanotubes hybrid electron transport layer for efficient and hysteresis‐free planar perovskite solar cells. Solar RRL, 4(1), 1900415.
doi:10.1002/solr.201900415 - Dong, Q., Shi, Y., Zhang, C., Wu, Y., & Wang, L. (2017). Energetically favored formation of SnO2 nanocrystals as electron transfer layer in perovskite solar cells with high efficiency exceeding 19%. Nano Energy, 40, 336-344.
doi:10.1016/j.nanoen.2017.08.041 - Fu, Q., Tang, X., Huang, B., Hu, T., Tan, L., Chen, L., & Chen, Y. (2018). Recent progress on the long‐term stability of perovskite solar cells. Advanced Science, 5(5), 1700387.
doi:10.1002/advs.201700387 - Aydin, E., De Bastiani, M., & De Wolf, S. (2019). Defect and contact passivation for perovskite solar cells. Advanced Materials, 31(25), 1900428.
doi:10.1002/adma.201900428 - Bu, T., Li, J., Zheng, F., Chen, W., Wen, X., Ku, Z., . Peng, Y., Zhong, J., Cheng Y-B. & Huang, F. (2018). Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nature Communications, 9(1), 4609.
doi:10.1038/s41467-018-07099-9 - Zhu, Z., Bai, Y., Liu, X., Chueh, C. C., Yang, S., & Jen, A. K. Y. (2016). Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron‐transporting layer. Advanced Materials, 28(30), 6478-6484.
doi:10.1002/adma.201600619 - Xie, J., Huang, K., Yu, X., Yang, Z., Xiao, K., Qiang, Y., . Zhu, X. Xu, L., Wang, P., Cui C. & Yang, D. (2017). Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano, 11(9), 9176-9182.
doi:10.1021/acsnano.7b04070 - Yang, G., Chen, C., Yao, F., Chen, Z., Zhang, Q., Zheng, X., . Zheng, X., Ma, J., Lei, H., Qin, P., Xiong, L., Ke, W., Li, G., Yan Y. & Fang, G. (2018). Effective carrier‐concentration tuning of SnO2 quantum dot electron‐selective layers for high‐performance planar perovskite solar cells. Advanced Materials, 30(14), 1706023.
doi:10.1002/adma.201706023 - Yang, D., Yang, R., Wang, K., Wu, C., Zhu, X., Feng, J., Ren, X., Fang, G., Priya S. & Liu, S. (2018). High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 9(1), 3239.
doi:10.1038/s41467-018-05760-x - Ke, W., Zhao, D., Xiao, C., Wang, C., Cimaroli, A. J., Grice, C. R., Yang, M., Li, Z., Jiang, C-S., Al-Jassim, M., Zhu, K., Kanatzidis, M.G., Fang, G. & Yan, Y. (2016). Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. Journal of Materials Chemistry A, 4(37), 14276-14283.
doi:10.1039/C6TA05095F - Bu, T., Liu, X., Zhou, Y., Yi, J., Huang, X., Luo, L., . Xiao, J., Ku, Z., Peng, Y., Huang, F., Cheng, Y-B. & Zhong, J. (2017). A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy & Environmental Science, 10(12), 2509-2515.
doi:10.1039/C7EE02634J - Peng, J., Khan, J. I., Liu, W., Ugur, E., Duong, T., Wu, Y., Shen, H., Wang, K., Dang, H., Aydin, E., Yang, X., Wan, Y., Weber, K.J., Catchpole, K.R., Laquai, F., De Wolf, S. & White, T. P. (2018). A universal double‐side passivation for high open‐circuit voltage in perovskite solar cells: role of carbonyl groups in poly (methyl methacrylate). Advanced Energy Materials, 8(30), 1801208.
doi:10.1002/aenm.201801208 - Zhu, P., Gu, S., Luo, X., Gao, Y., Li, S., Zhu, J., & Tan, H. (2020). Simultaneous contact and grain‐boundary passivation in planar perovskite solar cells using SnO2‐KCl composite electron transport layer. Advanced Energy Materials, 10(3), 1903083.
doi:10.1002/aenm.201903083 - Li, F., Shen, Z., Weng, Y., Lou, Q., Chen, C., Shen, L., . Shen, L., Guo, W., & Li, G. (2020). Novel electron transport layer material for perovskite solar cells with over 22% efficiency and long‐term stability. Advanced Functional Materials, 30(45), 2004933.
doi:10.1002/adfm.202004933 - Huang, L., Krasnok, A., Alú, A., Yu, Y., Neshev, D., & Miroshnichenko, A. E. (2022). Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics, 85(4), 046401.
doi:10.1088/1361-6633/ac45f9 - Zhang, H., Chhowalla, M., & Liu, Z. (2018). 2D nanomaterials: graphene and transition metal dichalcogenides. Chemical Society Reviews, 47(9), 3015-3017.
doi:10.1039/C8CS90048E - Kumar, A., & Ahluwalia, P. K. (2013). Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M= Mo, W; X= S, Se, Te). Modelling and Simulation in Materials Science and Engineering, 21(6), 065015.
doi:10.1088/0965-0393/21/6/065015 - Ramasubramaniam, A., Naveh, D., & Towe, E. (2011). Tunable band gaps in bilayer transition-metal dichalcogenides. Physical Review B - Condensed Matter and Materials Physics, 84(20), 205325.
doi:10.1103/PhysRevB.84.205325 - Mu, X., & Sun, M. (2020). Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Applied Physics Letters, 117(9).
doi:10.1063/5.0018854 - Engel, J., Francis, S., & Roldan, A. (2019). The influence of support materials on the structural and electronic properties of gold nanoparticles-a DFT study. Physical Chemistry Chemical Physics, 21(35), 19011-19025.
doi:10.1039/C9CP03066B - Xia, C., Xiong, W., Du, J., Wang, T., Peng, Y., Wei, Z., . Li, J. & Jia, Y. (2018). Type‐I Transition Metal Dichalcogenides Lateral Homojunctions: Layer Thickness and External Electric Field Effects. Small, 14(21), 1800365.
doi:10.1002/smll.201800365 - Dasgupta, U., Chatterjee, S., & Pal, A. J. (2017). Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 172, 353-360.
doi:10.1016/j.solmat.2017.08.012 - Huang, P., Wang, Z., Liu, Y., Zhang, K., Yuan, L., Zhou, Y., Song, B. & Li, Y. (2017). Water-soluble 2D transition metal dichalcogenides as the hole-transport layer for highly efficient and stable p-i-n perovskite solar cells. ACS Applied Materials & Interfaces, 9(30), 25323-25331.
doi:10.1021/acsami.7b06403 - Liu, J., Zhuang, D., Luan, H., Cao, M., Xie, M., & Li, X. (2013). Preparation of Cu(In,Ga)Se2 thin film by sputtering from Cu(In, Ga)Se2 quaternary target. Progress in Natural Science: Materials International, 23(2), 133-138.
doi:10.1016/j.pnsc.2013.02.006 - Liu, J., Zhuang, D. M., Cao, M. J., Li, X. L., Xie, M., & Xu, D. W. (2014). Cu(In,Ga)Se2 -based solar cells prepared from Se-containing precursors. Vacuum, 102, 26-30.
doi:10.1016/j.vacuum.2013.10.007 - Li, S., Chen, Z., & Zhang, W. (2012). Dye-sensitized solar cells based on WS2 counter electrodes. Materials Letters, 72, 22-24.
doi:10.1016/j.matlet.2011.12.052 - Hankare, P. P., Manikshete, A. H., Sathe, D. J., Chate, P. A., Patil, A. A., & Garadkar, K. M. (2009). WS2 thin films: Opto-electronic characterization. Journal of Alloys and Compounds, 479(1-2), 657-660.
doi:10.1016/j.jallcom.2009.01.024 - Gourmelon, E., Lignier, O., Hadouda, H., Couturier, G., Bernede, J. C., Tedd, J., Pouzet, J. & Salardenne, J. (1997). MS2 (M= W, Mo) photosensitive thin films for solar cells. Solar Energy Materials and Solar Cells, 46(2), 115-121.
doi:10.1016/S0927-0248(96)00096-7 - Lignier, O., Couturier, G., Tedd, J., Gonbeau, D., & Salardenne, J. (1997). Photoactivity enhancement of WS2 sputtered thin films by use of nickel. Thin Solid Films, 299(1-2), 45-52.
doi:10.1016/S0040-6090(96)09319-4 - Sobayel, K., Akhtaruzzaman, M., Rahman, K. S., Ferdaous, M. T., Al-Mutairi, Z. A., Alharbi, H. F., Alharthi, N.H., Karim, M.R., Hasmady, S. & Amin, N. (2019). A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results in Physics, 12, 1097-1103.
doi:10.1016/j.rinp.2018.12.049 - Rosman, N. N., Yunus, R. M., Minggu, L. J., Arifin, K., Salehmin, M. N. I., Mohamed, M. A., & Kassim, M. B. (2018). Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: an overview. International Journal of Hydrogen Energy, 43(41), 18925-18945.
doi:10.1016/j.ijhydene.2018.08.126 - You, P., Tang, G., & Yan, F. (2019). Two-dimensional materials in perovskite solar cells. Materials Today Energy, 11, 128-158.
doi:10.1016/j.mtener.2018.11.006 - Bhujbal, P. K., Sakunde, B., Supekar, A., Bh, H., Saini, S., Dhirhe, D., . Patole, S.P. & Pathan, H. M. (2024). Unlocking the potential of WS2 as an electron transport layer in lead-free methylammonium tin iodide-based perovskite solar cells: a comprehensive defect study using the SCAPS-1D framework. ES Energy & Environment, 26, 1225.
doi:10.30919/esee1225 - Liu, Y., Sun, Y., & Rockett, A. (2012). A new simulation software of solar cells-wxAMPS. Solar Energy Materials and Solar Cells, 98, 124-128.
doi:10.1016/j.solmat.2011.10.010 - Liu, Y., Heinzel, D., & Rockett, A. (2011, June). A new solar cell simulator: WxAMPS. In 2011 37th IEEE Photovoltaic Specialists Conference (pp. 002753-002756). IEEE.
doi:10.1109/PVSC.2011.6186517 - Liu, Y., Sun, Y., & Rockett, A. (2012, June). Batch simulation of solar cells by using Matlab and wxAMPS. In 2012 38th IEEE Photovoltaic Specialists Conference (pp. 000902-000905). IEEE.
doi:10.1109/PVSC.2012.6317748 - Liu, Y., Heinzel, D., & Rockett, A. (2010, June). A revised version of the AMPS simulation code. In 2010 35th IEEE Photovoltaic Specialists Conference (pp. 001943-001947). IEEE.
doi:10.1109/PVSC.2010.5616225 - Anwar, F. (2012). Numerical Modeling Of CdS/ZnXCd1-XTe Solar Cell.
- Hossain, M. K., Toki, G. I., Kuddus, A., Mohammed, M. K., Pandey, R., Madan, J., Bhattarai, S., Md. Rahman, F., Dwivedi, D.K., Amami, M., Bencherif, H.& Samajdar, D. P. (2023). Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: a combination of SCAPS-1D and wxAMPS study. Materials Chemistry and Physics, 308, 128281.
doi:10.1016/j.matchemphys.2023.128281 - Azri, F., Meftah, A., Sengouga, N., & Meftah, A. (2019). Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell. Solar Energy, 181, 372-378.
doi:10.1016/j.solener.2019.02.017 - Elseman, A. M., Shalan, A. E., Rashad, M. M., & Hassan, A. M. (2017). Experimental and simulation study for impact of different halides on the performance of planar perovskite solar cells. Materials Science in Semiconductor Processing, 66, 176-185.
doi:10.1016/j.mssp.2017.04.022 - Abd El-Samad, A. E., Gad, N., El-Aasser, M., Rashad, M. M., & Elseman, A. M. (2022). Optoelectronic investigation and simulation study of zinc and cobalt doped lead halide perovskite nanocrystals. Solar Energy, 247, 553-563.
doi:10.1016/j.solener.2022.10.061 - Moustafa, M., Al Zoubi, T., & Yasin, S. (2022). Optoelectronics Simulation of CIGS-Based Solar Cells Using a Cd-Free Nontoxic ZrSxSe2−x as a Novel Buffer Layer. Brazilian Journal of Physics, 52(4), 141.
doi:10.1007/s13538-022-01146-z - Moustafa, M., Mourched, B., Salem, S., & Yasin, S. (2023). Performance enhancement of CZTS-based solar cells with tungsten disulfide as a new buffer layer. Solid State Communications, 359, 115007.
doi:10.1016/j.ssc.2022.115007 - Moiz, S. A. (2021, December). Optimization of hole and electron transport layer for highly efficient lead-free Cs2TiBr6-based perovskite solar cell. In Photonics (Vol. 9, No. 1, p. 23). MDPI.
doi:10.3390/photonics9010023 - Ahmed, A., Riaz, K., Mehmood, H., Tauqeer, T., & Ahmad, Z. (2020). Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Optical Materials, 105, 109897.
doi:10.1016/j.optmat.2020.109897 - Jeyakumar, R., Bag, A., Nekovei, R., & Radhakrishnan, R. (2020). Influence of electron transport layer (TiO2) thickness and its doping density on the performance of CH3NH3PbI3-based planar perovskite solar cells. Journal of Electronic Materials, 49(6), 3533-3539.
doi:10.1007/s11664-020-08041-w - Giordano, F., Abate, A., Correa Baena, J. P., Saliba, M., Matsui, T., Im, S. H., Zakeeruddin, S.M., Nazeeruddin, M.K., Hagfeldt, A. & Graetzel, M. (2016). Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications, 7(1), 10379.
doi:10.1038/ncomms10379 - Sebastian, V., & Kurian, J. (2021). Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells. Solar Energy, 221, 99-108.
doi:10.1016/j.solener.2021.04.030 - Liu, D., Gangishetty, M. K., & Kelly, T. L. (2014). Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. Journal of Materials Chemistry A, 2(46), 19873-19881.
doi:10.1039/C4TA02637C - Raj, A., Kumar, M., Bherwani, H., Gupta, A., & Anshul, A. (2021). Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation. Journal of Vacuum Science & Technology B, 39(1).
doi:10.1116/6.0000718
-
Планарні перовскітні сонячні елементи (PSC) стали перспективною фотоелектричною технологією завдяки можливості їхньої низькотемпературної обробки та спрощеного виготовлення. Ключовим фактором підвищення ефективності планарних PSC є шар транспортування електронів (ETL). У цьому дослідженні розглядається використання WS2, дихалькогеніду перехідного металу (TMDC), як альтернативного ETL у планарній структурі n-i-p перовскітних сонячних елементів на основі активного шару метиламоній свинцевого йодиду (MAPbI3). Доцільність застосування WS2 як заміни традиційних ETL, вирішуючи проблеми, пов’язані з токсичністю та стабільністю, оцінено чисельним моделюванням за допомогою програмного забезпечення wxAMPS. Для оптимізації продуктивності пристрою, на основі комплексного моделювання проаналовано вплив різних параметрів, включаючи товщину ETL, шар транспортування дірок, шар поглинача, концентрацію легування, щільність дефектів і заборонену зону.Оптимальна товщина шару WS2 ETL встановлена на рівні 150 нм, а ширина його забороненої зони – 1,8 еВ. Оптимізована конфігурація досягає таких показників ефективності: коефіцієнт перетворення енергії 26,34%, фактор заповнення 82,84%, густина струму короткого замикання 22,7 мА/см2 і напруга холостого ходу 1,41 В. Отримані результати підкреслюють потенціал WS2 TMDC-ETL для високоефективних PSC, відкриваючи можливості для практичного застосування після експериментальної перевірки.
Ключові слова: дихалькогеніди перехідних металів, моделювання wxAMPS, перовскітні сонячні елементи, шар транспортування електронів
© Ukrainian Journal of Physical Optics ©