Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 2


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

RADIOPHOTOLUMINESCENCE IN THE TISSUE-EQUIVALENT LiB3O5:Ag GLASSES

V. Adamiv, M. Kushlyk, U. Dutchak, Ya. Burak, I. Teslyuk, I. Medvid, I. Koflyuk and A. Luchechko.


ABSTRACT

The absorption, photoluminescence (PL), and radiophotoluminescence (RPL) spectra in lithium triborate glass (LiB3O5:Ag), doped with 1% silver ions and irradiated with different doses of γ-radiation in the 0-20 Gy range have been investigated. The change of these spectra as a function of irradiation dose was also measured. The PL spectra of Ag+ are dominated by an ultraviolet broadband at about 290 nm. The RPL band is centered at about 430 nm at the excitations in the 310-350 nm spectral region. The mechanism of RPL emission arises from a change in the charge state of silver to A0-type centers when Ag+-doped glass is exposed to radiation that generates electrons and holes.

Keywords: lithium triborate glass, γ-radiation, radiophotoluminescence, dosimetric response

UDC: 535.37

    1. Huang, D.Y. & Hsu, S.M. (2011). Radio-Photoluminescence Glass Dosimeter (RPLGD). In InTech eBooks.
    2. Kawamoto, H., Koshimizu, M., Fujimoto, Y., & Asai, K. (2022). Radiophotoluminescence behavior in Ag-doped phosphate glasses. Japanese Journal of Applied Physics, 62(1), 010501.
      doi:10.35848/1347-4065/ac9cb0
    3. Sato, F., Zushi, N., Nagai, T., Tanaka, T., Kato, Y., Yamamoto, T., & Iida, T. (2013). Development of radiophotoluminescence glass dosimeter usable in high temperature environment. Radiation Measurements, 53-54, 8-11.
      doi:10.1016/j.radmeas.2013.03.016
    4. Yokota, R., & Imagawa, H. (1967). Radiophotoluminescent centers in silver-activated phosphate glass. Journal of the Physical Society of Japan, 23, 1038-1048.
      doi:10.1143/JPSJ.23.1038
    5. McKeever, S., Sholom, S., & Shrestha, N. (2019). Observations regarding the build-up effect in radiophotoluminescence of silver-doped phosphate glasses. Radiation Measurements, 123, 13-20.
      doi:10.1016/j.radmeas.2019.02.009
    6. Miyamoto, Y., Yamamoto, T., Kinoshita, K., Koyama, S., Takei, Y., Nanto, H., Shimotsuma, Y., Sakakura, M., Miura, K., & Hirao, K. (2010). Emission mechanism of radiophotoluminescence in Ag-doped phosphate glass. Radiation Measurements, 45(3-6), 546-549.
      doi:10.1016/j.radmeas.2010.01.012
    7. Miyamoto, Y., Takei, Y., Nanto, H., Kurobori, T., Konnai, A., Yanagida, T., Yoshikawa, A., Shimotsuma, Y., Sakakura, M., Miura, K., Hirao, K., Nagashima, Y., & Yamamoto, T. (2011). Radiophotoluminescence from silver-doped phosphate glass. Radiation Measurements, 46, 1480-1483.
      doi:10.1016/j.radmeas.2011.05.048
    8. Nishikawa, A., Shiratori, D., Kato, T., Nakauchi, D., Kawaguchi, N., & Yanagida, T. (2023). Radiophotoluminescence properties of Ag2O-Cs2O-BaO-Al2O3-P2O5 glasses. Radiation Measurements, 170, 107052.
      doi:10.1016/j.radmeas.2023.107052
    9. Kawamoto, H., Fujimoto, Y., & Asai, K. (2024). Radio-photoluminescence in Ag-doped Na-Al Borate Glass. Sensors and Materials, 36, 607-621.
      doi:10.18494/SAM4766
    10. Kawamoto, H., Tanaka, H., Koshimizu, M., Fujimoto, Y., & Asai, K. (2020). Hole transfer in Ag-doped phosphate glasses having different cations elucidated by measuring variation of electron spin resonance spectra and photoluminescence spectra over time. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions With Materials and Atoms, 479, 137-142.
      doi:10.1016/j.nimb.2020.06.014
    11. Agar, O., Sayyed, M.I., Tekin, H.O., Kaky K.M., Baki S.O., & Kityk I. (2019). An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code. Results in Physics, 12, 629-634.
      doi:10.1016/j.rinp.2018.12.003
    12. Tiwari, B., Chaudhary, R. K., Srivastava, A., Kumar, R., & Sonawane, M. (2022). Tissue-equivalent dosimeters based on copper doped lithium tetraborate single crystals for radiotherapy. Radiation Measurements, 151, 106704.
      doi:10.1016/j.radmeas.2022.106704
    13. Saray, A. A., Kaviani, P., & Shahbazi-Gahrouei, D. (2020). Dosimetric characteristics of lithium triborate (LiB3O5) nanophosphor for medical applications. Radiation Measurements, 140, 106502.
      doi:10.1016/j.radmeas.2020.106502
    14. Özdemir, Z., Özbayoğlu, G., & Yilmaz, A. (2007). Investigation of thermoluminescence properties of metal oxide doped lithium triborate. Journal of Materials Science, 42, 8501-8508.
      doi:10.1007/s10853-007-1746-z
    15. Kafadar, V.E., Yazici, A.N., & Yildirim, R.G. (2009). Determination of trapping parameters of dosimetric thermoluminescent glow peak of lithium triborate (LiB3O5) activated by aluminum. Journal of Luminescence, 129, 710-714.
      doi:10.1016/j.jlumin.2009.01.017
    16. Depci, T., Ozbayoglu, G., & Yilmaz, A. (2011). Synthesis and thermoluminescence properties of rare earth oxides (Y, Ce-Lu) doped lithium triborate. Journal of Rare Earths, 29, 618.
      doi:10.1016/S1002-0721(10)60509-1
    17. Adamiv, V.T., Burak, Ya.V., Teslyuk, I.M., Antonyak, O.T., Moroz I.E., & Malynych, S.Z. (2019). LiB3O5 pyroceramic for thermoluminescent dosimeters. Ukrainian Journal of Physical Optics, 20, 159-167.
      doi:10.3116/16091833/20/4/159/2019
    18. Adamiv, V., Burak, Ya., Volodko, N., Dutchak, U., Izo, T., Teslyuk, I., & Luchechko, A. (2024). Effect of gamma-irradiation on the photoluminescence of silver-doped lithium triborate glass. Applied Optics, 63, 2630-2635.
      doi:10.1364/AO.514966
    19. Tanaka, H., Fujimoto, Y., Saeki, K., Koshimizu, M., Yanagida, T., & Asai, K. (2017). Radiophotoluminescence properties of Ag-doped mixed phosphate glasses. Radiation Measurements, 106, 180-186.
      doi:10.1016/j.radmeas.2017.01.010
    20. Ogorodnikov I.N., Kuznetsov, A.Yu., Kruzhalov, A.V., & Maslov V.A. (1995). Point defects and short-wavelength luminescence of LiB3O5 single crystals. Radiation Effects and Defects in Solids, 136, 233-237.
      doi:10.1080/10420159508218826
    21. Adamiv, V.T., Bolesta, I.M., Burak, Ya.V., Gamernyk, R.V., Karbovnyk, I.D., Kolych, I.I., Kovalchuk, M.G., Kushnir, O.O., Periv, M.V., & Teslyuk, I.M. (2014). Nonlinear optical properties of silver nanoparticles prepared in Ag doped borate glasses. Physica B: Condensed Matter, 449, 31-35.
      doi:10.1016/j.physb.2014.05.009
    22. Kreibig, U., & Vollmer, M. (1995). Optical properties of metal clusters. In Springer series in materials science.
      doi:10.1007/978-3-662-09109-8
    23. Janata, E., Henglein, A., & Ershov, B. (1994). First clusters of Ag+ ion reduction in aqueous solution. Journals of Physical Chemistry, 98, 10888-10890.
      doi:10.1021/j100093a033
    24. Simo, A., Polte, J., Pfänder, N., Vainio, U., Emmerling, F., & Rademann, K. (2012). Formation mechanism of silver nanoparticles stabilized in glassy matrices. Journal of the American Chemical Society, 134, 18824−18833.
      doi:10.1021/ja309034n
    25. Paje, S.E., Llopis, J., Villegas, M.A., & Fernandez Navarro, J.M. (1996). Photoluminescence of a silver-doped glass. Applied Physics A, 63, 431-434.
      doi:10.1007/BF01571669

    Досліджено спектри поглинання, фотолюмінесценції (ФЛ) та радіофотолюмінесценції (РФЛ) у склі триборату літію (LiB3O5:Ag), легованому 1% іонами срібла та опроміненому різними дозами γ-випромінювання в діапазоні 0-20 Гр. Також вимірювали зміну цих спектрів як функцію дози опромінення. У спектрах ФЛ Ag+ переважає ультрафіолетова широка смуга приблизно при 290 нм. Смуга РФЛ зосереджена приблизно на 430 нм при збудженнях в спектральній області 310-350 нм. Механізм випромінювання РФЛ виникає через зміну зарядового стану срібла до центрів типу Ag0, коли скло, леговане Ag+, піддається випромінюванню, яке генерують електрони та дірки. Ключові слова: скло триборату літію, γ-випромінювання, радіофотолюмінесценція, дозиметричний відгук

    Ключові слова: lithium triborate glass, γ-radiation, radiophotoluminescence, dosimetric response


© Ukrainian Journal of Physical Optics ©