Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 2


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

EXPLORING QUANTUM WELLS IN OLED TECHNOLOGIES: A COMPREHENSIVE REVIEW OF APPLICATIONS AND ADVANCEMENTS

Liliia Deva, Pavlo Stakhira, Volodymyr Fitio, Ruslana Guminilovych, Tetiana Bulavinets, Mariia Stanitska and Dmytro Volyniuk


ABSTRACT

Efficient organic light-emitting diodes (OLEDs) with structurally integrated quantum wells are attracting considerable attention due to their ability to obtain narrow spectral radiation and high radiation efficiency. In particular, there is a tendency to enhance efficiency in such light-emitting devices due to the inclusion in their architecture of phosphorescent metal-organic complexes and materials with an inherent mechanism of thermally activated delayed fluorescence. Due to strong spin-orbit interaction, this approach transforms non-radiating triplet excitons into radiating singlet excitons. In this review, we mainly discuss the mechanisms of electrogenerated exciton localization in potential wells to preserve OLED efficiency with increased emission brightness and reduced exciton leakage channels, report on quantum wells design strategies for OLEDs exhibiting blue, green, red, infrared, and white highly efficient radiation, and provide information on the practical application of quantum well technology in various organic electronics devices. By analyzing recent developments and challenges, this comprehensive review provides insights into the potential of quantum wells to revolutionize OLED innovation and future trends.

Keywords: organic light-emitting diode, quantum well, electroluminescence, thermally activated delayed fluorescence

UDC: 535.37; 621.38

    1. Wang, J., Zhang, F., Zhang, J., Tang, W., Tang, A., Peng, H., Xu, Z., Teng, F., & Wang, Y. (2013). Key issues and recent progress of high efficient organic light-emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 17, 69-104.
      doi:10.1016/j.jphotochemrev.2013.08.001
    2. Li, D., Guo, B., Shen, Y., Li, J., & Huang, Y. (2016). Making image more energy efficient for OLED smart devices. Mobile Information Systems, 2016, 6575931.
      doi:10.1155/2016/6575931
    3. Olajiga, O., Ani, E., Sikhakane, Z., & Olatunde, T. (2024). A comprehensive review of energy-efficient lighting technologies and trends. Engineering Science & Technology Journal, 5, 1097-1111.
      doi:10.51594/estj.v5i3.973
    4. Kartik, G., Sunitha, D., & Jyothi, T. (2023). Advances in solid-state lighting: A review. Research & Development in Material Science, 19(2), 2205-2206.
      doi:10.31031/RDMS.2023.19.000956
    5. Blood, P. (1999). Visible-emitting quantum well lasers. In A. Miller, M. Ebrahimzadeh, & D. M. Finlayson (Eds.), Semiconductor quantum optoelectronics (pp. 193-211). Institute of Physics.
      doi:10.1201/9781003072829-6
    6. Kang, K., Byeon, I., Kim, Y. G., Choi, J., & Kim, D. (2024). Nanostructures in organic light-emitting diodes: Principles and recent advances in the light extraction strategy. Laser & Photonics Reviews, 18(8), 2400547.
      doi:10.1002/lpor.202400547
    7. Murawski, C., & Gather, M. C. (2021). Emerging biomedical applications of organic light-emitting diodes. Advanced Optical Materials, 9(14), 2100269.
      doi:10.1002/adom.202100269
    8. Martins, P., Pereira, N., Lima, A. C., Garcia, A., Mendes-Filipe, C., Policia, R., Correia, V., & Lanceros-Mendez, S. (2023). Advances in printing and electronics: From engagement to commitment. Advanced Functional Materials, 33, 2213744.
      doi:10.1002/adfm.202213744
    9. Ahmad, S., Raushan, M. A., Gupta, H., Kattayat, S., Kumar, S., Dalela, S., Alvi, P. A., & Siddiqui, M. J. (2019). Performance enhancement of UV quantum well light emitting diode through structure optimization. Optical and Quantum Electronics, 51(7), 243.
      doi:10.1007/s11082-019-1964-z
    10. Chen, W., Wen, X., Yang, J., Latzel, M., Patterson, R., Huang, S., Shrestha, S., Jia, B., Moss, D., Christiansen, S., & Conibeer, G. (2018). Free charges versus excitons: Photoluminescence investigation of InGaN/GaN multiple quantum well nanorods and their planar counterparts. Nanoscale, 10(11), 5358-5365.
      doi:10.1039/C7NR07567G
    11. Kim, K., Park, Y., Hyun, B. G., Choi, M., & Park, J. (2019). Recent advances in transparent electronics with stretchable forms. Advanced Materials, 31, 1804690.
      doi:10.1002/adma.201804690
    12. Naqvi, S. M. K. A., Baig, M. F., Farid, T., Nazir, Z., Mohsan, S. A. H., Liu, Z., Cai, W., & Chang, S. (2023). Unraveling degradation processes and strategies for enhancing reliability in organic light-emitting diodes. Nanomaterials, 13, 3020.
      doi:10.3390/nano13233020
    13. Park, S. W., & Kim, D. (2023). Overcoming the limitation of spin statistics in organic light-emitting diodes (OLEDs): Hot exciton mechanism and its characterization. International Journal of Molecular Sciences, 24, 12362.
      doi:10.3390/ijms241512362
    14. Meng, L., Wang, H., Wei, X., Liu, J., Chen, Y., Kong, X., Lv, X., Wang, P., & Wang, Y. (2016). Highly efficient nondoped organic light-emitting diodes based on thermally activated delayed fluorescence emitter with quantum-well structure. ACS Applied Materials & Interfaces, 8(32), 20955-20961.
      doi:10.1021/acsami.6b07563
    15. Wu, S., Li, S., Sun, Q., Huang, C., & Fung, M.-K. (2016). Highly efficient white organic light-emitting diodes with ultrathin emissive layers and a spacer-free structure. Scientific Reports, 6(1), 25821.
      doi:10.1038/srep25821
    16. Kar, S., Jamaludin, N. F., Yantara, N., Mhaisalkar, S. G., & Leong, W. L. (2020). Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. Nanophotonics, 10(8), 2103-2143.
      doi:10.1515/nanoph-2021-0033
    17. Yang, X., Zhuang, S., Qiao, X., Mu, G., Wang, L., Chen, J., & Ma, D. (2012). High efficiency blue phosphorescent organic light-emitting diodes with a multiple quantum well structure for reduced efficiency roll-off. Optics Express, 20(22), 24411-24417.
      doi:10.1364/OE.20.024411
    18. Kou, Zh., Xu, Y., Cheng, S., & Wang, X. (2016). The effect of the quantum well structure in green phosphorescent OLED with a mixed host emission interlayer. Journal of Display Technology, 12, 1668-1671.
      doi:10.1109/JDT.2016.2614688
    19. Reinhard, E., Demarty, C.-H., & Blondé, L. (2023). Pixel value adjustment to reduce the energy requirements of display devices. SMPTE Motion Imaging Journal, 132(7), 10-19.
      doi:10.5594/JMI.2023.3285245
    20. Xu, D., Li, X., Ju, H., Zhu, Y., & Deng, Z. (2011). A novel red organic light-emitting diode with ultrathin DCJTB and Rubrene layers. Displays, 32(2), 92-95.
      doi:10.1016/j.displa.2011.01.002
    21. Vasilopoulou, M., Fakharuddin, A., García de Arquer, F. P., Georgiadou, D., Kim, H., Yusoff, A., Gao, F., Nazeeruddin, M., Bolink, H., & Sargent, E. (2021). Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 15(9), 656-669.
      doi:10.1038/s41566-021-00855-2
    22. Zhao, W., Hu, X., Kong, F., Tang, J., Yan, D., Wang, J., Liu, Y., Sun, Y., Sheng, R., & Chen, P. (2024). Progress in Research on White Organic Light-Emitting Diodes Based on Ultrathin Emitting Layers. Micromachines, 15(5), 626.
      doi:10.3390/mi15050626
    23. Zhou, Y., Gao, H., Wang, J., Yeung, F.S.Y., Lin, S., Li, X., Liao, S., Luo, D., Kwok, H.S., Liu, B. (2023). Organic Light-Emitting Diodes with Ultrathin Emitting Nanolayers. Electronics, 12(14), 3164.
      doi:10.3390/electronics12143164
    24. Miller, D.A.B. (1996). Optical Physics of Quantum Wells. In Quantum Dynamics of Simple Systems (pp. 239 - 266). Institute of Physics, London.
    25. Fox, M., & Ispasoiu, R. (2006). Quantum Wells, Superlattices, and Band-Gap Engineering. In Springer Handbooks (pp. 1021 - 1040). Springer, Boston, MA.
      doi:10.1007/978-0-387-29185-7_42
    26. Zhao, H., Liu, G., Zhang, J., Poplawsky, J.D., Dierolf, V., & Tansu, N. (2011). Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Optics Express, 19(S4), 991 - 1007.
      doi:10.1364/OE.19.00A991
    27. Piprek, J. (2010). Efficiency droop in nitride-based light emitting diodes. Physica Status Solidi A, 207(10), 2217 - 2225.
      doi:10.1002/pssa.201026149
    28. Zhao, H., Liu, G., Zhang, J., Arif, R.A., & Tansu, N. (2013). Analysis of internal quantum efficiency and current injection efficiency in III-nitride light emitting diodes. Journal of Display Technology, 9(4), 212 - 225.
      doi:10.1109/JDT.2013.2250252
    29. Lin, G.-B., Meyaard, D., Cho, J., Schubert, E.F., Shim, H., & Sone, C. (2012). Analytic model for the efficiency droop in semiconductors with asymmetric carrier transport properties based on drift-induced reduction of injection efficiency. Applied Physics Letters, 100(16), 161106.
      doi:10.1063/1.4704366
    30. Tang, C.W., & VanSlyke, S.A. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51(12), 913 - 915.
      doi:10.1063/1.98799
    31. Burroughes, J.H., Bradley, D.D.C., Brown, A.R., Marks, R.N., Mackay, K., Friend, R.H., Burn, P.L., Holmes, A.B. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347(6293), 539 - 541.
      doi:10.1038/347539a0
    32. Xie, Z., Huang, J., Li, C., Liu, S., Li, Y., Wang, Y., & Shen, J. (1999). Organic multiple-quantum well white electroluminescent devices. Synthetic Metals, 106(1), 71 - 74.
    33. Xie, Z., Huang, J., Li, C., Chen, B., Liu, S., Li, Y., Wang, Y., & Shen, J. (1999). High efficient green emission from organic multi-quantum wells structure. Chinese Physics Letters, 16(2), 149 - 151.
      doi:10.1088/0256-307X/16/2/026
    34. Sato, Y., & Kanai, H. (1994). Stability of organic electroluminescent diodes. Molecular Crystals and Liquid Crystals, 253, 143 - 150.
      doi:10.1080/10587259408055253
    35. So, F.F., VanSlyke, S.R., Shi, Y.Q., & Steier, W.H. (1990). Quasi-epitaxial growth of organic multiple quantum well structures by organic molecular beam deposition. Applied Physics Letters, 56(7), 674 - 676.
      doi:10.1063/1.102733
    36. So, F.F., & Forrest, S.R. (1991). Evidence for exciton confinement in crystalline organic multiple quantum wells. Physical Review Letters, 66(20), 2649 - 2652.
      doi:10.1103/PhysRevLett.66.2649
    37. Tada, N., Tatsuhara, S., Fujii, A., Ohmori, Y., & Yoshino, K. (1997). Nonlinear emission from 8-hydroxyquinoline aluminum and diamine derivative superlattice structures excited by third-harmonic-generation from Nd:YAG laser light. Japanese Journal of Applied Physics, 36, 421-424.
      doi:10.1143/JJAP.36.L421
    38. Chan, J., Lu, A. W., Ng, A. M. C., Djurišić, A. B., & Rakić, A. D. (2006). Organic quantum well light-emitting diodes. Proceedings of SPIE, 6038, 60381M.
      doi:10.1117/12.638370
    39. Eskandarian, P., Fallah, H., Hajimahmoodzadeh, M., Zabolian, H., Mardani, S. (2021). Efficiency enhancement of green organic light-emitting diode utilizing aromatic diamine/bathocuproine multiple quantum wells. Optical Materials, 117, 111125.
      doi:10.1016/j.optmat.2021.111125
    40. Liu, S., Guan, M., Zhang, Y., Li, Y., Liu, X., Sun, W., Liu, C., & Zeng, Y. (2018). The charge confinement effect of quantum-well Alq3-based OLEDs by dual-pulsed transient electroluminescence. Optics Communications, 419, 13-17.
      doi:10.1016/j.optcom.2018.02.049
    41. Zhang, Y., Hao, Y., Meng, W., Xu, H., Wang, H., Xu, B. (2011). The characterization of electroplex generated from the interface between 2-(4-trifluoromethyl-2-hydroxyphenyl)benzothiazole] zinc and N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine. Applied Physics A, 106(3), 709-715.
      doi:10.1007/s00339-011-6677-5
    42. Fujita, S., Nakazawa, T., Asano, M., & Fujita, S. (2000). Comparative study of photoluminescence dynamics of tris(8-hydroxyquinoline) aluminum-based organic multilayer structures with different types of energy lineups. Japanese Journal of Applied Physics, 39(9R), 5301-5309.
      doi:10.1143/JJAP.39.5301
    43. Liu, S. M., Li, B., Zhang, L. M., & Yue, S. M. (2011). Low-voltage, high efficiency nondoped phosphorescent organic light-emitting devices with double-quantum-well structure. Applied Physics Letters, 98(16), 163301.
      doi:10.1063/1.3581216
    44. Jesuraj, P.J., Hafeez, H., Kim, D.H., Lee, J.C., Lee, W.H., Choi, D.K., Kim, C.H., Song, M., Kim, C.S., Ryu, S.Y. (2018). Recombination zone control without sensing layer and the exciton confinement in green phosphorescent OLEDs by excluding interface energy transfer. Journal of Physical Chemistry C, 122(5), 2951-2958.
      doi:10.1021/acs.jpcc.7b11039
    45. Lee, S., Koo, J., Hyung, G., Lim, D., Lee, D., Lee, K., Yoon, S., Kim, W., Kim, Y. (2012). Effect of triplet multiple quantum well structures on the performance of blue phosphorescent organic light-emitting diodes. Nanoscale Research Letters, 7(1), 23.
      doi:10.1186/1556-276X-7-23
    46. Hu, B., Lü, Z., Tang, Z., Wu, Y., Ji, W., Wang, J. (2023). Stabilized Huang-Rhys factor in non-doped exciplex-based Firpic phosphorescent organic light emitting diodes via quantum well-like multiple emissive layer structure and investigation of carrier behaviors by transient electroluminescence. Organic Electronics, 123, 106919.
      doi:10.1016/j.orgel.2023.106919
    47. Jang, I.G., Murugadoss, V., Park, T.H., Son, K.R., Lee, H.J., Ren, W.Q., Yu, M.J., Kim, T.G. (2022). Cavity-suppressing electrode integrated with multi-quantum well emitter: A universal approach toward high-performance blue TADF top emission OLED. Nano-Micro Letters, 14, 60.
      doi:10.1007/s40820-022-00802-y
    48. Sun, Y., Sun, W., Liu, W., Li, X., Yin, J., Zhou, L. (2022). Efficient nondoped pure red/near-infrared TADF OLEDs by designing and adjusting double quantum wells structure. ACS Applied Electronic Materials, 4(7), 3615-3622.
      doi:10.1021/acsaelm.2c00531
    49. Zhao, B., Su, Z., Li, W., Chu, B., Jin, F., Yan, X., Zhang, T., Zhang, F., Fan, D., Gao, Y., Wang, J., Pi, H., & Zhu, J. (2013). The influence of type-I and type-II triplet multiple quantum well structure on white organic light-emitting diodes. Nanoscale Research Letters, 8(1), 529.
      doi:10.1186/1556-276X-8-529
    50. Li, S.-H., Wu, S.-F., Wang, Y.-K., Liang, J.-J., Sun, Q., Huang, C.-C., Wu, J.-C., Liao, L.-S., Fung, M.-K. (2018). Management of excitons for highly efficient organic light emitting diodes with reduced triplet exciton quenching: Synergistic effects of exciplex and quantum well structure. Journal of Materials Chemistry C, 6(2), 342-349.
      doi:10.1039/C7TC04441K
    51. Park, T. J., Jeon, W. S., Choi, J. W., Pode, R., Jang, J., & Kwon, J. H. (2009). Efficient multiple triplet quantum well structures in organic light-emitting devices. Applied Physics Letters, 95(10), 103303.
      doi:10.1063/1.3224190
    52. Li, F., Tang, H., Anderegg, J., & Shinar, J. (1997). Fabrication and electroluminescence of double-layered organic light-emitting diodes with the Al2O3/Al cathode. Applied Physics Letters, 70(10), 1233 - 1235.
      doi:10.1063/1.118539
    53. Shimada, T., Hamaguchi, K., Koma, A., & Ohuchi, F.S. (1998). Electronic structures at the interfaces between copper phthalocyanine and layered materials. Applied Physics Letters, 72(15), 1869-1871.
      doi:10.1063/1.121210
    54. Parthasarathy, G., Burrows, P.E., Khalfin, V., Kozlov, V.G., & Forrest, S.R. (1998). A metal-free cathode for organic semiconductor devices. Applied Physics Letters, 72(17), 2138 - 2140.
      doi:10.1063/1.121301
    55. Huang, J., Yang, K., Xie, Z., Chen, B., Jiang, H., Liu, S. (1998). Effect of well number on organic multiple-quantum-well electroluminescent device characteristics. Applied Physics Letters, 73(23), 3348 - 3350.
      doi:10.1063/1.122765
    56. Fujita, S., Nakazawa, T., Asano, M., & Fujita, S. (2000). Comparative study of photoluminescence dynamics of tris(8-hydroxyquinoline) aluminum-based organic multilayer structures with different types of energy lineups. Japanese Journal of Applied Physics, 39(9R), 5301-5309.
      doi:10.1143/JJAP.39.5301
    57. Fujii, A., Yoshida, M., Ohmori, Y., & Yoshino, K. (1995). Polarization anisotropy of organic electroluminescent diode with periodic multilayer structure utilizing 8-hydroxyquinoline aluminum and aromatic diamine. Japanese Journal of Applied Physics, 34(5B), 621-624.
      doi:10.1143/JJAP.34.L621
    58. Ohmori, Y., Fujii, A., Uchida, M., Morishima, C., & Yoshino, K. (1993). Fabrication and characteristics of 8‐hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode. Applied Physics Letters, 62(25), 3250-3252.
      doi:10.1063/1.109089
    59. Matsushima, T., Jin, G.-H., & Murata, H. (2008). Marked improvement in electroluminescence characteristics of organic light-emitting diodes using an ultrathin hole-injection layer of molybdenum oxide. Journal of Applied Physics, 104, 054501.
      doi:10.1063/1.2974089
    60. Zhang, H. M., & Choy, W. C. H. (2008). Indium tin oxide modified by Au and vanadium pentoxide as an efficient anode for organic light-emitting devices. IEEE Transactions on Electron Devices, 55(9), 2517-2520.
      doi:10.1109/TED.2008.927387
    61. Pommerehne, J., Vestweber, H., Tak, Y. H., & Bässler, H. (1996). Transient electroluminescence from single- and double-layer light-emitting diodes (LEDs) based on polymer blends. Synthetic Metals, 76, 67-70.
      doi:10.1016/0379-6779(95)03421-F
    62. Dastan, D., Gosavi, S. W., & Chaure, N. B. (2015). Studies on electrical properties of hybrid polymeric gate dielectrics for field-effect transistors. Macromolecular Symposia, 347(1), 81-86.
      doi:10.1002/masy.201400042
    63. Dastan, D. (2017). Effect of preparation methods on the properties of titania nanoparticles: Solvothermal versus sol-gel. Applied Physics A, 123(11), 699.
      doi:10.1007/s00339-017-1309-3
    64. Ayobi, A., Mirnia, S. N., Roknabadi, M. R., & Bahari, A. (2019). The effects of MoO3/TPD multiple quantum well structures on the performance of organic light-emitting diodes (OLEDs). Journal of Materials Science: Materials in Electronics, 30, 3952-3958.
      doi:10.1007/s10854-019-00680-y
    65. Kanai, K., Koizumi, K., Ouchi, S., Tsukamoto, Y., Sakanoue, K., Ouchi, Y., & Seki, K. (2010). Electronic structure of anode interface with molybdenum oxide buffer layer. Organic Electronics, 11(2), 188-194.
      doi:10.1016/j.orgel.2009.10.013
    66. Silvaco International. (2004). ATLAS User Manual (1st ed.). Silvaco International.
    67. Vakarchuk, I. O. (2004). Quantum mechanics. Lviv: Ivan Franko National University of Lviv, 784(2), 37-44.
    68. Fitio, V. M. (2011). Resonance levels of the potential well created by rectangular barriers of finite height. Visnyk of Lviv Polytechnic National University, Electronics, 708, 173-179.
    69. Tan, G., Lee, J.-H., Lin, S.-C., Zhu, R., Choi, S.-H., & Wu, S.-T. (2017). Analysis and optimization on the angular color shift of RGB OLED displays. Optics Express, 25(26), 33629-33642.
      doi:10.1364/OE.25.033629
    70. Liguori, R., Nunziata, F., Aprano, S., & Maglione, M. (2024). Overcoming challenges in OLED technology for lighting solutions. Electronics, 13(7), 1299.
      doi:10.3390/electronics13071299
    71. Li, H.-Z., Xie, F.-M., Zhang, K., Shen, Y., Zhou, W., Li, Y.-Q., Wang, W.-J., & Tang, J.-X. (2022). Dual-channel charge transfer-based thermally activated delayed fluorescence emitter facilitating efficient and low roll-off non-doped devices. Chemical Engineering Journal, 436, 135234.
      doi:10.1016/j.cej.2022.135234
    72. Wu, T.-L., Huang, M.-J., Lin, C.-C., Huang, P.-Y., Chou, T.-Y., Cheng, R.-W. C., Lin, H.-W., Liu, R.-S., & Cheng, C.-H. (2018). Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off. Nature Photonics, 12(4), 235-240.
      doi:10.1038/s41566-018-0112-9
    73. Wang, Q., Tian, Q.-S., Zhang, Y.-L., Tang, X., Liao, L.-S. (2019). High-efficiency organic light-emitting diodes with exciplex host. Journal of Materials Chemistry C, 7, 11329.
      doi:10.1039/C9TC03092A
    74. Mu, H., Jiang, Y., Xie, H. (2019). Efficient blue phosphorescent organic light emitting diodes based on exciplex and ultrathin Firpic sandwiched layer. Organic Electronics, 66, 195-205.
      doi:10.1016/j.orgel.2018.11.014
    75. Lee, J.-H., Chen, C.-H., Lee, P.-H., Lin, H.-Y., Leung, M.-K., Chiu, T.-L., Lin, C.-F. (2019). Blue organic light-emitting diodes: Current status, challenge, and future outlook. Journal of Materials Chemistry C, 7, 5874-5888.
      doi:10.1039/C9TC00204A
    76. Zhang, Q.S., Tsang, D., Kuwabara, H., Hatae, Y., Li, B., Takahashi, T., Lee, S.Y., Yasuda, T., Adachi, C. (2015). Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Advanced Materials, 27(12), 2096-2100.
      doi:10.1002/adma.201405474
    77. Rhee, S.H., Kim, C.S., Song, M., Ryu, S.Y. (2017). Correlation between interlayer thickness and device performance in blue phosphorescent organic light emitting diodes with a quantum well structure. Organic Electronics, 42, 343-347.
      doi:10.1016/j.orgel.2016.12.056
    78. Qiu, Y., Gao, Y., Wang, L., Wei, P., Duan, L., Zhang, D., Dong, G. (2002). High-efficiency organic light-emitting diodes with tunable light emission by using aromatic diamine/5,6,11,12-tetraphenylnaphthacene multiple quantum wells. Applied Physics Letters, 81(19), 3540-3542.
      doi:10.1063/1.1519348
    79. Zhu, H., Xu, Z., Zhao, S., Zhang, F., Gao, L., Kong, C., Yan, G., Wang, Y. (2011). Study on the influences of quantum well structure on the performance of organic light emitting devices. Displays, 32, 102-105.
      doi:10.1016/j.displa.2010.12.003
    80. Bhansali, U.S., Jia, H., Lopez, M.A.Q., Gnade, B.E., Chen, W.-H., Omary, M.A. (2009). Controlling the carrier recombination zone for improved color stability in a two-dopant fluorophore/phosphor white organic light-emitting diode. Applied Physics Letters, 94(20), 203501.
      doi:10.1063/1.3089867
    81. Song, W., Kim, T., Lee, Y., Lee, J.Y. (2017). A stepwise energy level doping structure for improving the lifetime of phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 5(16), 3948-3954.
      doi:10.1039/C7TC00556C
    82. Hsiao, C.-H., Chen, Y.-H., Lin, T.-C., Hsiao, C.-C., Lee, J.-H. (2006). Recombination zone in mixed-host organic light-emitting devices. Applied Physics Letters, 89(16), 163511.
      doi:10.1063/1.2361266
    83. Reineke, S., Walzer, K., Leo, K. (2007). Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Physical Review B, 75(12), 125328.
      doi:10.1103/PhysRevB.75.125328
    84. Setoguchi, Y., Adachi, C. (2010). Suppression of roll-off characteristics of electroluminescence at high current densities in organic light emitting diodes by introducing reduced carrier injection barriers. Journal of Applied Physics, 108(6), 064516.
      doi:10.1063/1.3488883
    85. Li, C., Duan, L., Zhang, D., Qiu, Y. (2015). Thermally activated delayed fluorescence sensitized phosphorescence: A strategy to break the trade-off between efficiency and efficiency roll-off. ACS Applied Materials & Interfaces, 7(28), 15154-15159.
      doi:10.1021/acsami.5b04090
    86. Wang, J., Chen, J., Qiao, X., Alshehri, S. M., Ahamad, T., & Ma, D. (2016). Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off. ACS Applied Materials & Interfaces, 8(16), 10093-10097.
      doi:10.1021/acsami.6b00861
    87. Pinner, D. J., Friend, R. H., & Tessler, N. (1999). Transient electroluminescence of polymer light emitting diodes using electrical pulses. Journal of Applied Physics, 86(9), 5116-5130.
      doi:10.1063/1.371488
    88. Niu, L., Guan, M., Chu, X., Zeng, Y., Li, Y., Zhang, Y. (2015). Transient current response characteristics in MoO3-based organic light-emitting diodes. The Journal of Physical Chemistry C, 119(19), 10526-10531.
      doi:10.1021/acs.jpcc.5b03175
    89. Qian, G., & Wang, Z. Y. (2010). Near-infrared organic compounds and emerging applications. Chemistry - A European Journal, 5(5), 1006-1029.
      doi:10.1002/asia.200900596
    90. Zampetti, A., Minotto, A., & Cacialli, F. (2019). Near-infrared (NIR) organic light-emitting diodes (OLEDs): Challenges and opportunities. Advanced Functional Materials, 29, 1807623.
      doi:10.1002/adfm.201807623
    91. Kim, J. H., Yun, J. H., & Lee, J. Y. (2018). Recent progress of highly efficient red and near-infrared thermally activated delayed fluorescent emitters. Advanced Optical Materials, 6, 1800255.
      doi:10.1002/adom.201800255
    92. Yeh, N. G., Wu, C.-H., & Cheng, T. C. (2010). Light-emitting diodes - their potential in biomedical applications. Renewable and Sustainable Energy Reviews, 14(8), 2161-2166.
      doi:10.1016/j.rser.2010.02.015
    93. Hu, Y., Yuan, Y., Shi, Y.-L., Li, D., Jiang, Z.-Q., & Liao, L.-S. (2018). Efficient near-infrared emission by adjusting the guest-host interactions in thermally activated delayed fluorescence organic light-emitting diodes. Advanced Functional Materials, 28(32), 1802597.
      doi:10.1002/adfm.201802597
    94. Zhang, Q., Li, B., Huang, S., Nomura, H., Tanaka, H., & Adachi, C. (2014). Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 8(4), 326-332.
      doi:10.1038/nphoton.2014.12
    95. Shimizu, M., Kaki, R., Takeda, Y., Hiyama, T., Nagai, N., Yamagishi, H., & Furutani, H. (2012). 1,4-Bis(diarylamino)-2,5-bis(4-cyanophenylethenyl)benzenes: Fluorophores exhibiting efficient red and near-infrared emissions in solid state. Angewandte Chemie International Edition, 124(17), 4171-4175.
      doi:10.1002/ange.201108943
    96. Caspar, J. V., Kober, E. M., Sullivan, B. P., & Meyer, T. J. (1982). Application of the energy gap law to the decay of charge-transfer excited states. Journal of the American Chemical Society, 104(2), 630-632.
      doi:10.1021/ja00366a051
    97. Jeon, W. S., Park, T. J., Kim, S. Y., Pode, R., Jang, J., & Kwon, J. H. (2009). Ideal host and guest system in phosphorescent OLEDs. Organic Electronics, 10(2), 240-246.
      doi:10.1016/j.orgel.2008.11.012
    98. Kim, Y., Jeon, W. S., Park, T. J., Pode, R., Jang, J., & Kwon, J. H. (2009). Low voltage efficient simple p-i-n type electrophosphorescent green organic light-emitting devices. Applied Physics Letters, 94(13), 133303.
      doi:10.1063/1.3114378
    99. Tsuboi, T., Jeon, W. S., & Kwon, J. H. (2009). Observation of phosphorescence from fluorescent organic material Bebq2 using phosphorescent sensitizer. Optical Materials, 31(12), 1755-1758.
      doi:10.1016/j.optmat.2008.07.017
    100. Adachi, C., Baldo, M. A., & Forrest, S. R. (2000). Electroluminescence mechanisms in organic light emitting devices employing a europium chelate doped in a wide energy gap bipolar conducting host. Journal of Applied Physics, 87(11), 8049-8055.
      doi:10.1063/1.373496
    101. Data, P., Pander, P., Okazaki, M., Takeda, Y., Minakata, S., Monkman, A. P. (2016). Dibenzo[a,j]phenazine-Cored Donor-Acceptor-Donor Compounds as Green-to-Red/NIR Thermally Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie International Edition, 55(19), 5739-5744.
      doi:10.1002/anie.201600113
    102. Ohmori, Y., Fujii, A., Uchida, M., Morishima, C., & Yoshino, K. (1993). Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8-hydroxyquinoline aluminum/aromatic diamine multilayer structure. Applied Physics Letters, 63(14), 1871-1873.
      doi:10.1063/1.110632
    103. Yuan, Y., Hu, Y., Zhang, Y.-X., Lin, J.-D., Wang, Y.-K., Jiang, Z.-Q., Liao, L.-S., & Lee, S.-T. (2017). Over 10% EQE near-infrared electroluminescence based on a thermally activated delayed fluorescence emitter. Advanced Functional Materials, 27(26), 1700986.
      doi:10.1002/adfm.201700986
    104. Kim, D.-H., D'Aléo, A., Chen, X.-K., Sandanayaka, A. D. S., Yao, D., Zhao, L., Komino, T., Zaborova, E., Canard, G., Tsuchiya, Y., Choi, E., Wu, J. W., Fages, F., Brédas, J.-L., Ribierre, J.-C., & Adachi, C. (2018). High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nature Photonics, 12(2), 98-104.
      doi:10.1038/s41566-017-0087-y
    105. Sun, Y., Sun, W., Zhang, D., Yin, J., Mao, M., & Zhou, L. (2023). Deep-red organic light-emitting diodes with increased external quantum efficiency and extended operational lifetime by managing the composition of mixed cohosts. The Journal of Physical Chemistry C, 127(39), 19378-19385.
      doi:10.1021/acs.jpcc.3c04174
    106. Zhao, H., Liu, W., Cui, R., Feng, S., Sun, Y., Zhou, L., & Qin, D. (2022). Effects of charge mobilities and exciton blocking capabilities of charge blocking layers on the performance of organic light-emitting diodes. Displays, 74, 102287.
      doi:10.1016/j.displa.2022.102287
    107. Zhao, X., Zhou, L., Zhu, Q., Cui, R., Cui, Y., Liu, W., Wang, J., & Mi, X. (2021). Efficient red electroluminescent devices with very low operation voltage by utilizing hole and electron transport materials as the host. Thin Solid Films, 717, 138474.
      doi:10.1016/j.tsf.2020.138474
    108. Su, S.-J., Chiba, T., Takeda, T., & Kido, J. (2008). Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Advanced Materials, 20(11), 2125-2130.
      doi:10.1002/adma.200701730
    109. Wang, J., Yu, J., Li, L., Wang, T., Yuan, K., & Jiang, Y. (2008). Low roll-off power efficiency organic light-emitting diodes consisted of nondoped ultrathin phosphorescent layer. Applied Physics Letters, 92(13), 133308.
      doi:10.1063/1.2907692
    110. He, G., Pfeiffer, M., Leo, K., Hofmann, M., Birnstock, J., Pudzich, R., & Salbeck, J. (2004). High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers. Applied Physics Letters, 85(17), 3911-3913.
      doi:10.1063/1.1812378
    111. Kamalasanan, M. N., Srivastava, R., Chauhan, G., Kumar, A., Tyagi, P., & Kumar, A. (2010). Organic light-emitting diodes for white light emission. In Organic Light Emitting Diode (pp. 179-224).
    112. Xie, Z. Y., Huang, J. S., Li, C. N., Liu, S. Y., Wang, Y., Li, Y. Q., & Shen, J. C. (1999). White light emission induced by confinement in organic multiheterostructures. Applied Physics Letters, 74(5), 641-643.
      doi:10.1063/1.123190
    113. Yang, S.-H., Hong, B.-C., & Huang, S.-F. (2009). Luminescence enhancement and emission color adjustment of white organic light-emitting diodes with quantum-well-like structures. Journal of Applied Physics, 105(11), 113105.
      doi:10.1063/1.3138810
    114. Zhao, B., Su, Z., Li, W., Chu, B., Jin, F., Yan, X., Zhang, F., Fan, D., Zhang, T., Gao, Y., & Wang, J. (2012). High efficient white organic light-emitting diodes based on triplet multiple quantum well structure. Applied Physics Letters, 101(5), 053310.
      doi:10.1063/1.4742739
    115. Monkman, A. P. (2013). Singlet generation from triplet excitons in fluorescent organic light-emitting diodes. ISRN Materials Science, 2013, 670130.
      doi:10.1155/2013/670130
    116. Zou, S.-J., Shen, Y., Xie, F., Chen, J.-D., Li, Y., & Tang, J. (2020). Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Materials Chemistry Frontiers, 4, 788-820.
      doi:10.1039/C9QM00716D
    117. Bayal, M., Chandran, N., Pilankatta, R., & Nair, S. S. (2021). Quantum wells, wires, and dots for luminescent device applications. In Nanomaterials for Luminescent Devices, Sensors, and Bio-imaging Applications (pp. 16). Springer.
      doi:10.1007/978-981-16-5367-4_2
    118. Zhao, D., Song, S., Zhao, S., & Xu, Z. (2007). Energy transfer in organic multilayer quantum well structure and its application to OLEDs. Optoelectronics Letters, 3, 99-102.
      doi:10.1007/s11801-007-6144-x
    119. Pan, R., Tang, X., Hu, Y., Zhu, H., Deng, J., & Xiong, Z. H. (2019). Extraordinary magnetic field effects mediated by spin-pair interaction and electron mobility in thermally activated delayed fluorescence-based OLEDs with quantum well structure. Journal of Materials Chemistry C, 1, 1-27.
      doi:10.1039/C8TC06033A
    120. Sun, N., Jiang, C., Li, Q., Tan, D., Bi, S., Song, J. (2020). Performance of OLED under mechanical strain: A review. Journal of Materials Science: Materials in Electronics, 31, 20688-20729.
      doi:10.1007/s10854-020-04652-5
    121. Bauri, J., Choudhary, R. B., & Mandal, G. (2021). Recent advances in efficient emissive materials-based OLED applications: A review. Journal of Materials Science, 56, 18837-18866.
      doi:10.1007/s10853-021-06503-y
    122. Kaushal, J. B., Raut, P., & Kumar, S. (2023). Organic electronics in biosensing: A promising frontier for medical and environmental applications. Biosensors, 13(11), 976.
      doi:10.3390/bios13110976

    Ефективні органічні світловипромінювальні діоди (OLED), в конструкції яких структурно інтегровані квантові ями, привертають значну увагу завдяки їхнїй здатності забезпечувати вузьке спектральне випромінювання та високу ефективність. Особливий інтерес викликає підвищення продуктивності таких світловипромінювальних пристроїв через впровадження у їхню архітектуру фосфоресцентних металоорганічних комплексів та матеріалів, яким притаманний механізм термоактивованої довготривалої флуоресценції. Цей підхід, завдяки сильній спін-орбітальній взаємодії, сприяє перетворенню невипромінювальних триплетних екситонів у випромінювальні синглетні екситони. У цьому огляді основна увага приділяється механізмам локалізації електрогенерованих екситонів у потенційних ямах, що дозволяє підвищити ефективність OLED шляхом збільшення яскравості випромінювання та зменшення каналів витоку екситонів через нерадіаційні процеси. Також розглядаються стратегії проєктування квантових ям для OLED, які випромінюють у синьому, зеленому, червоному, інфрачервоному та білому діапазонах. Крім того, у статті наведено аналіз практичного застосування технолії квантових ям у різноманітних пристроях органічної електроніки. Огляд сучасних розробок та існуючих викликів надає всебічне уявлення про потенціал квантових ям у революціонізації OLED-технологій та окреслює майбутні тенденції в цій галузі.

    Ключові слова: органічний світлодіод, квантова яма, електролюмінесценція, термічно активована довготривала флуоресценція


© Ukrainian Journal of Physical Optics ©