Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 1


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

THERMAL EXPANSION AND VIBRATIONAL SPECTRA OF PARATELLURITE IN QUASI-HARMONIC APPROXIMATION

Y. Syetov


ABSTRACT

Thermal expansion of the paratellurite is modeled with density functional theory calculations using quasi-harmonic approximation. The calculations qualitatively reproduce anisotropy of the thermal expansion and demonstrate good correspondence to the experimental values at low temperatures. Lattice vibrations at the Γ-point are described in terms of the motion of the TeO2 fragments, and the temperature shift of frequencies in vibrational spectra is evaluated.

Keywords: paratellurite, thermal expansion, phonons, vibrational spectra

UDC: 539.8: 538.958

    1. Goutzoulis, A. P. (2021). Design and fabrication of acousto-optic devices. CRC Press.
      doi:10.1201/9781003210221
    2. Devabharathi, N., Yadav, S., Dönges, I., Trouillet, V., & Schneider, J. J. (2024). α‐TeO2 oxide as transparent p‐type semiconductor for low temperature processed thin film transistor devices. Advanced Materials Interfaces, 11(16), 2301082.
      doi:10.1002/admi.202301082
    3. Mayer, R. A., Wehmeier, L., Torquato, M., et al. (2024). Paratellurite nanowires as a versatile material for THz phonon polaritons. ACS Photonics, 11(10), 4323-4333.
      doi:10.1021/acsphotonics.4c01249
    4. Subedi, R., & Guisbiers, G. (2024). Synthesis of ultrawide band gap TeO2 nanoparticles by pulsed laser ablation in liquids: Top ablation versus bottom ablation. ACS Omega.
      doi:10.1021/acsomega.3c10497
    5. White, G. K., Collocott, S. J., & Collins, J. G. (1990). Thermal properties of paratellurite (TeO2) at low temperatures. Journal of Physics: Condensed Matter, 2(37), 7715.
      doi:10.1088/0953-8984/2/37/015
    6. Silvestrova, I. M., Pisarevskii, Y. V., Senyushenkov, P. A., Krupny, A. I., Voszka, R., Földvári, I., & Janszky, J. (1987). Temperature dependence of elastic properties of paratellurite. Phys. Status Solidi A;(German Democratic Republic), 101(2).
      doi:10.1002/pssa.2211010215
    7. Ohmachi, Y., & Uchida, N. (1970). Temperature dependence of elastic, dielectric, and piezoelectric constants in TeO2 single crystals. Journal of Applied Physics, 41(6), 2307-2311.
      doi:10.1063/1.1659223
    8. Gao, S., Zhang, X., Zeng, Q., & Wang, S. (2019). First-principles study of elastic, electronic, and optical properties of α-TeO2 under pressure. Journal of Alloys and Compounds, 776, 417-427.
      doi:10.1016/j.jallcom.2018.10.140
    9. Roginskii, E. M., Smirnov, M. B., Kuznetsov, V. G., Noguera, O., Cornette, J., Masson, O., & Thomas, P. (2019). A computational study of the electronic structure and optical properties of the complex TeO2/TeO3 oxides as advanced materials for nonlinear optics. Materials Research Express, 6(12), 125903.
      doi:10.1088/2053-1591/ab55a3
    10. Deringer, V. L., Stoffel, R. P., & Dronskowski, R. (2014). Thermochemical ranking and dynamic stability of TeO2 polymorphs from ab initio theory. Crystal Growth & Design, 14(2), 871-878.
      doi:10.1021/cg401822g
    11. Li, Y., Fan, W., Sun, H., Cheng, X., Li, P., & Zhao, X. (2010). Structural, electronic, and optical properties of α, β, and γ-TeO2. Journal of Applied Physics, 107(9).
      doi:10.1063/1.3406135
    12. Ceriotti, M., Pietrucci, F., & Bernasconi, M. (2006). Ab initio study of the vibrational properties of crystalline TeO2: The α, β, and γ phases. Physical Review B-Condensed Matter and Materials Physics, 73(10), 104304.
      doi:10.1103/PhysRevB.73.104304
    13. Palumbo, M., & Dal Corso, A. (2017). Lattice dynamics and thermophysical properties of hcp Os and Ru from the quasi-harmonic approximation. Journal of Physics: Condensed Matter, 29(39), 395401.
      doi:10.1088/1361-648X/aa7dca
    14. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. & Burke, K. (2008). Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100(13), 136406.
      doi:10.1103/PhysRevLett.100.136406
    15. Giannozzi, P., Baroni, S., Bonini, et al. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21(39), 395502.
      doi:10.1088/0953-8984/21/39/395502
    16. Giannozzi, P., Andreussi, O., Brumme, et al. (2017). Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics: Condensed Matter, 29(46), 465901.
      doi:10.1088/1361-648X/aa8f79
    17. https://dalcorso.github.io/thermo_pw/
    18. Thomas, P. A. (1988). The crystal structure and absolute optical chirality of paratellurite, α-TeO2. Journal of Physics C: Solid State Physics, 21(25), 4611.
      doi:10.1088/0022-3719/21/25/009
    19. Rodriguez, V., Couzi, M., Adamietz, F., Dussauze, M., Guery, G., Cardinal, T., Veber, P., Richardson, K. & Thomas, P. (2013). Hyper‐Raman and Raman scattering in paratellurite TeO2. Journal of Raman Spectroscopy, 44(5), 739-745.
      doi:10.1002/jrs.4251
    20. Pine, A. S., & Dresselhaus, G. (1972). Raman scattering in paratellurite, TeO2. Physical Review B, 5(10), 4087.
      doi:10.1103/PhysRevB.5.4087
    21. Korn, D. M., Pine, A. S., Dresselhaus, G., & Reed, T. B. (1973). Infrared reflectivity of paratellurite, TeO2. Physical Review B, 8(2), 768.
      doi:10.1103/PhysRevB.8.768
    22. Wilson, E. B., Decius, J. C., & Cross, P. C. (1980). Molecular vibrations: the theory of infrared and Raman vibrational spectra. Courier Corporation.
    23. Allen, P. B. (2020). Theory of thermal expansion: Quasi-harmonic approximation and corrections from quasi-particle renormalization. Modern Physics Letters B, 34(02), 2050025.
      doi:10.1142/S0217984920500256

    Теплове розширення парателуриту моделюється за допомогою розрахунків теорії функціоналу густини з використанням квазігармонійного наближення. Розрахунки якісно відтворюють анізотропію теплового розширення та демонструють добру відповідність експериментальним значенням при низьких температурах. Коливання ґратки в Γ-точці описано в рамках руху фрагментів TeO2 та оцінено температурний зсув частот у коливальних спектрах.

    Ключові слова: парателурит, теплове розширення, фонони, коливальні спектри


© Ukrainian Journal of Physical Optics ©