Ukrainian Journal of Physical Optics
2025 Volume 26, Issue 1
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
LOW-TEMPERATURE LUMINESCENCE OF LIB3O5 GLASS WITH A HUMAN BODY TISSUE-EQUIVALENT EFFECTIVE ATOMIC NUMBER
V. Adamiv, Ya. Burak, I. Medvid, I. Koflyuk, U. Dutchak, I. Teslyuk, T. Izo and R. Gamernyk
Author Information
V. Adamiv
O.G.Vlokh Institute of Physical Optics of the Ivan Franko National University of Lviv, Dragomanov 23, 79005 Lviv, Ukraine
Ya. Burak
O.G.Vlokh Institute of Physical Optics of the Ivan Franko National University of Lviv, Dragomanov 23, 79005 Lviv, Ukraine
I. Medvid
Ivan Franko National University of Lviv, Dragomanov 50, 79005, Lviv, Ukraine
I. Koflyuk
Ivan Franko National University of Lviv, Dragomanov 50, 79005, Lviv, Ukraine
U. Dutchak
Lviv Oncology Regional Medical & Diagnostic Center, Ya. Hashek 2a, 79058 Lviv, Ukraine
I. Teslyuk
O.G.Vlokh Institute of Physical Optics of the Ivan Franko National University of Lviv, Dragomanov 23, 79005 Lviv, Ukraine
T. Izo, Lviv Oncology Regional Medical & Diagnostic Center, Ya. Hashek 2a, 79058 Lviv, Ukraine
R. Gamernyk
Ivan Franko National University of Lviv, Kyrylo & Mephodiy 8, 79005 Lviv, Ukraine
Ukr. J. Phys. Opt.
Vol. 26
,
Issue 1 , pp. 01001 - 01008 (2025).
doi:10.3116/16091833/Ukr.J.Phys.Opt.2025.01001
ABSTRACT
A study of the low-temperature (8.6 K) luminescence of undoped LiB3O5 glass under excitation by synchrotron radiation (22.2 eV and 7.1 eV) was carried out. A comparative analysis of the obtained results was carried out with the results of studies of the low-temperature luminescence of undoped LiB3O5 single crystals published by other authors. As a result, a mechanism for the emission of undoped LiB3O5 glass at low temperatures was proposed, which is associated with the formation of unrelaxed molecular-type excitons, their migration, followed by the formation of autolocalized excitons near point defects, and with the corresponding their annihilation
Keywords:
lithium triborate glass, photoluminescence, synchrotron radiation, dosimetry
UDC:
535.37
- Adamiv, V. T., Burak, Y. V., Teslyuk, I. M., Antonyak, O. T., Moroz, I. E., & Malynych, S. Z. (2019). LiB3O5 pyroceramic for thermoluminescent dosimeters. Ukrainian Journal of Physical Optics, 20(4), 151-167.
doi:10.3116/16091833/20/4/159/2019 - Saray, A. A., Kaviani, P., & Shahbazi-Gahrouei, D. (2021). Dosimetric characteristics of lithium triborate (LiB3O5) nanophosphor for medical applications. Radiation Measurements, 140, 106502.
doi:10.1016/j.radmeas.2020.106502 - Wouter, C., Dirk, V., Paul, L., & Tom, D. (2017). A reusable OSL-film for 2D radiotherapy dosimetry. Physics in Medicine & Biology, 62(21), 8441.
doi:10.1088/1361-6560/aa8de6 - Ahmed, M. F., Eller, S. A., Schnell, E., Ahmad, S., Akselrod, M. S., Hanson, O. D., & Yukihara, E. G. (2014). Development of a 2D dosimetry system based on the optically stimulated luminescence of Al2O3. Radiation measurements, 71, 187-192.
doi:10.1016/j.radmeas.2014.01.009 - Ahmed, M. F., Shrestha, N., Ahmad, S., Schnell, E., Akselrod, M. S., & Yukihara, E. G. (2017). Demonstration of 2D dosimetry using Al2O3 optically stimulated luminescence films for therapeutic megavoltage x-ray and ion beams. Radiation Measurements, 106, 315-320.
doi:10.1016/j.radmeas.2017.04.010 - Al‐Senan, R. M., & Hatab, M. R. (2011). Characteristics of an OSLD in the diagnostic energy range. Medical physics, 38(7), 4396-4405.
doi:10.1118/1.3602456 - Yukihara, E. G., & Kron, T. (2020). Applications of optically stimulated luminescence in medical dosimetry. Radiation Protection Dosimetry, 192(2), 122-138.
doi:10.1093/rpd/ncaa213 - Yukihara, E. G., McKeever, S. W., & Akselrod, M. S. (2014). State of art: Optically stimulated luminescence dosimetry-Frontiers of future research. Radiation Measurements, 71, 15-24.
doi:10.1016/j.radmeas.2014.03.023 - Sholom, S., & McKeever, S. W. S. (2023). Silver molecular clusters and the properties of radiophotoluminescence of alkali-phosphate glasses at high dose. Radiation Measurements, 163, 106924.
doi:10.1016/j.radmeas.2023.106924 - Gustafson, T. D., Milliken, E. D., Jacobsohn, L. G., & Yukihara, E. G. (2019). Progress and challenges towards the development of a new optically stimulated luminescence (OSL) material based on MgB4O7: Ce, Li. Journal of Luminescence, 212, 242-249.
doi:10.1016/j.jlumin.2019.04.028 - Kananen, B. E., Maniego, E. S., Golden, E. M., Giles, N. C., McClory, J. W., Adamiv, V. T., Burak, Ya.V. & Halliburton, L. E. (2016). Optically stimulated luminescence (OSL) from Ag-doped Li2B4O7 crystals. Journal of Luminescence, 177, 190-196.
doi:10.1016/j.jlumin.2016.04.032 - Adamiv, V., Burak, Y., Volodko, N., Dutchak, U., Izo, T., Teslyuk, I., & Luchechko, A. (2024). Effect of gamma-irradiation on the photoluminescence of silver-doped lithium triborate glass. Applied Optics, 63(10), 2630-2635.
doi:10.1364/AO.514966 - Kitagawa, Y., Yukihara, E. G., & Tanabe, S. (2021). Development of Ce3+ and Li+ co-doped magnesium borate glass ceramics for optically stimulated luminescence dosimetry. Journal of Luminescence, 232, 117847.
doi:10.1016/j.jlumin.2020.117847 - Ivanov, V. Y., Kuznetsov, A. Y., Ogorodnikov, I. N., Pustovarov, V. A., & Kruzhalov, A. V. (1995). Luminescence of lithium triborate crystals under high intensity synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 359(1-2), 339-341.
doi:10.1016/0168-9002(94)01666-6 - Ogorodnikov, I. N., Pustovarov, V. A., Porotnikov, A. V., & Kruzhalov, A. V. (1998). A polarized fast luminescence of LiB3O5 single crystals excited by synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 405(2-3), 403-407.
doi:10.1016/S0168-9002(97)00162-9 - Ogorodnikov, I. N., Isaenko, L. I., Kruzhalov, A. V., & Porotnikov, A. V. (2001). Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO). Radiation Measurements, 33(5), 577-581.
doi:10.1016/S1350-4487(01)00062-2 - https://photon-science.desy.de/facilities/petra_iii/beamlines/p66_superlumi/i ndex_eng.html.
- Hoppe, R. (1978). ber Borati der Alkalimetalle. II. Zur Kenntnis von LiB3O5 [1]. Zeitschrift für anorganische und allgemeine Chemie, 439(1), 71-79.
doi:10.1002/zaac.19784390107 - Padlyak, B. V., Mudry, S. I., Kulyk, Y. O., Drzewiecki, A., Adamiv, V. T., Burak, Y. V., & Teslyuk, I. M. (2012). Synthesis and X-ray structural investigation of undoped borate glasses. Materials Science-Poland, 30, 264-273.
doi:10.2478/s13536-012-0032-1 - Osipov, A. A., & Osipova, L. M. (2010). Structural studies of Na2O-B2O3 glasses and melts using high-temperature Raman spectroscopy. Physica B: Condensed Matter, 405(23), 4718-4732.
doi:10.1016/j.physb.2010.08.025 - Xu, Y. N., & Ching, W. Y. (1990). Electronic structure and optical properties of LiB3O5. Physical Review B, 41(8), 5471.
doi:10.1103/PhysRevB.41.5471 - Moustafa, Y. M., Hassan, A. K., El-Damrawi, G., & Yevtushenko, N. G. (1996). Structural properties of V2O5-Li2O-B2O3 glasses doped with copper oxide. Journal of non-crystalline solids, 194(1-2), 34-40.
doi:10.1016/0022-3093(95)00465-3 - Antonyak, O. T., Burak, Y. V., Lyseiko, I. T., Pidzyrailo, N. S., & Khapko, Z. A. (1986). Luminescence of Li2B4O7 crystals. Optics and Spectroscopy, 61(3), 345-347.
-
Проведено дослідження низькотемпературної (8,6 К) люмінесценції нелегованого скла LiB3O5 при збудженні синхротронним випромінюванням (22,2 еВ і 7,1 еВ). Проведено порівняльний аналіз отриманих результатів з опублікованими іншими авторами результатами досліджень низькотемпературної люмінесценції нелегованих монокристалів LiB3O5. У результаті запропоновано механізм випромінювання нелегованого скла LiB3O5 при низьких температурах, який пов’язаний з утворенням нерелаксованих екситонів молекулярного типу, їх міграцією з подальшим утворенням автолокалізованих екситонів поблизу точкових дефектів і їх анігіляцією.
Ключові слова: триборатне скло літію, фотолюмінесценція, синхротронне випромінювання, дозиметрія
Ключові слова: lithium triborate glass, photoluminescence, synchrotron radiation, dosimetry
© Ukrainian Journal of Physical Optics ©