Ukrainian Journal of Physical Optics


2025 Volume 26, Issue 1


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

LOW-TEMPERATURE LUMINESCENCE OF LIB3O5 GLASS WITH A HUMAN BODY TISSUE-EQUIVALENT EFFECTIVE ATOMIC NUMBER

V. Adamiv, Ya. Burak, I. Medvid, I. Koflyuk, U. Dutchak, I. Teslyuk, T. Izo and R. Gamernyk


ABSTRACT

A study of the low-temperature (8.6 K) luminescence of undoped LiB3O5 glass under excitation by synchrotron radiation (22.2 eV and 7.1 eV) was carried out. A comparative analysis of the obtained results was carried out with the results of studies of the low-temperature luminescence of undoped LiB3O5 single crystals published by other authors. As a result, a mechanism for the emission of undoped LiB3O5 glass at low temperatures was proposed, which is associated with the formation of unrelaxed molecular-type excitons, their migration, followed by the formation of autolocalized excitons near point defects, and with the corresponding their annihilation

Keywords: lithium triborate glass, photoluminescence, synchrotron radiation, dosimetry

UDC: 535.37

    1. Adamiv, V. T., Burak, Y. V., Teslyuk, I. M., Antonyak, O. T., Moroz, I. E., & Malynych, S. Z. (2019). LiB3O5 pyroceramic for thermoluminescent dosimeters. Ukrainian Journal of Physical Optics, 20(4), 151-167.
      doi:10.3116/16091833/20/4/159/2019
    2. Saray, A. A., Kaviani, P., & Shahbazi-Gahrouei, D. (2021). Dosimetric characteristics of lithium triborate (LiB3O5) nanophosphor for medical applications. Radiation Measurements, 140, 106502.
      doi:10.1016/j.radmeas.2020.106502
    3. Wouter, C., Dirk, V., Paul, L., & Tom, D. (2017). A reusable OSL-film for 2D radiotherapy dosimetry. Physics in Medicine & Biology, 62(21), 8441.
      doi:10.1088/1361-6560/aa8de6
    4. Ahmed, M. F., Eller, S. A., Schnell, E., Ahmad, S., Akselrod, M. S., Hanson, O. D., & Yukihara, E. G. (2014). Development of a 2D dosimetry system based on the optically stimulated luminescence of Al2O3. Radiation measurements, 71, 187-192.
      doi:10.1016/j.radmeas.2014.01.009
    5. Ahmed, M. F., Shrestha, N., Ahmad, S., Schnell, E., Akselrod, M. S., & Yukihara, E. G. (2017). Demonstration of 2D dosimetry using Al2O3 optically stimulated luminescence films for therapeutic megavoltage x-ray and ion beams. Radiation Measurements, 106, 315-320.
      doi:10.1016/j.radmeas.2017.04.010
    6. Al‐Senan, R. M., & Hatab, M. R. (2011). Characteristics of an OSLD in the diagnostic energy range. Medical physics, 38(7), 4396-4405.
      doi:10.1118/1.3602456
    7. Yukihara, E. G., & Kron, T. (2020). Applications of optically stimulated luminescence in medical dosimetry. Radiation Protection Dosimetry, 192(2), 122-138.
      doi:10.1093/rpd/ncaa213
    8. Yukihara, E. G., McKeever, S. W., & Akselrod, M. S. (2014). State of art: Optically stimulated luminescence dosimetry-Frontiers of future research. Radiation Measurements, 71, 15-24.
      doi:10.1016/j.radmeas.2014.03.023
    9. Sholom, S., & McKeever, S. W. S. (2023). Silver molecular clusters and the properties of radiophotoluminescence of alkali-phosphate glasses at high dose. Radiation Measurements, 163, 106924.
      doi:10.1016/j.radmeas.2023.106924
    10. Gustafson, T. D., Milliken, E. D., Jacobsohn, L. G., & Yukihara, E. G. (2019). Progress and challenges towards the development of a new optically stimulated luminescence (OSL) material based on MgB4O7: Ce, Li. Journal of Luminescence, 212, 242-249.
      doi:10.1016/j.jlumin.2019.04.028
    11. Kananen, B. E., Maniego, E. S., Golden, E. M., Giles, N. C., McClory, J. W., Adamiv, V. T., Burak, Ya.V. & Halliburton, L. E. (2016). Optically stimulated luminescence (OSL) from Ag-doped Li2B4O7 crystals. Journal of Luminescence, 177, 190-196.
      doi:10.1016/j.jlumin.2016.04.032
    12. Adamiv, V., Burak, Y., Volodko, N., Dutchak, U., Izo, T., Teslyuk, I., & Luchechko, A. (2024). Effect of gamma-irradiation on the photoluminescence of silver-doped lithium triborate glass. Applied Optics, 63(10), 2630-2635.
      doi:10.1364/AO.514966
    13. Kitagawa, Y., Yukihara, E. G., & Tanabe, S. (2021). Development of Ce3+ and Li+ co-doped magnesium borate glass ceramics for optically stimulated luminescence dosimetry. Journal of Luminescence, 232, 117847.
      doi:10.1016/j.jlumin.2020.117847
    14. Ivanov, V. Y., Kuznetsov, A. Y., Ogorodnikov, I. N., Pustovarov, V. A., & Kruzhalov, A. V. (1995). Luminescence of lithium triborate crystals under high intensity synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 359(1-2), 339-341.
      doi:10.1016/0168-9002(94)01666-6
    15. Ogorodnikov, I. N., Pustovarov, V. A., Porotnikov, A. V., & Kruzhalov, A. V. (1998). A polarized fast luminescence of LiB3O5 single crystals excited by synchrotron radiation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 405(2-3), 403-407.
      doi:10.1016/S0168-9002(97)00162-9
    16. Ogorodnikov, I. N., Isaenko, L. I., Kruzhalov, A. V., & Porotnikov, A. V. (2001). Thermally stimulated luminescence and lattice defects in crystals of alkali metal borate LiB3O5 (LBO). Radiation Measurements, 33(5), 577-581.
      doi:10.1016/S1350-4487(01)00062-2
    17. https://photon-science.desy.de/facilities/petra_iii/beamlines/p66_superlumi/i ndex_eng.html.
    18. Hoppe, R. (1978). ber Borati der Alkalimetalle. II. Zur Kenntnis von LiB3O5 [1]. Zeitschrift für anorganische und allgemeine Chemie, 439(1), 71-79.
      doi:10.1002/zaac.19784390107
    19. Padlyak, B. V., Mudry, S. I., Kulyk, Y. O., Drzewiecki, A., Adamiv, V. T., Burak, Y. V., & Teslyuk, I. M. (2012). Synthesis and X-ray structural investigation of undoped borate glasses. Materials Science-Poland, 30, 264-273.
      doi:10.2478/s13536-012-0032-1
    20. Osipov, A. A., & Osipova, L. M. (2010). Structural studies of Na2O-B2O3 glasses and melts using high-temperature Raman spectroscopy. Physica B: Condensed Matter, 405(23), 4718-4732.
      doi:10.1016/j.physb.2010.08.025
    21. Xu, Y. N., & Ching, W. Y. (1990). Electronic structure and optical properties of LiB3O5. Physical Review B, 41(8), 5471.
      doi:10.1103/PhysRevB.41.5471
    22. Moustafa, Y. M., Hassan, A. K., El-Damrawi, G., & Yevtushenko, N. G. (1996). Structural properties of V2O5-Li2O-B2O3 glasses doped with copper oxide. Journal of non-crystalline solids, 194(1-2), 34-40.
      doi:10.1016/0022-3093(95)00465-3
    23. Antonyak, O. T., Burak, Y. V., Lyseiko, I. T., Pidzyrailo, N. S., & Khapko, Z. A. (1986). Luminescence of Li2B4O7 crystals. Optics and Spectroscopy, 61(3), 345-347.

    Проведено дослідження низькотемпературної (8,6 К) люмінесценції нелегованого скла LiB3O5 при збудженні синхротронним випромінюванням (22,2 еВ і 7,1 еВ). Проведено порівняльний аналіз отриманих результатів з опублікованими іншими авторами результатами досліджень низькотемпературної люмінесценції нелегованих монокристалів LiB3O5. У результаті запропоновано механізм випромінювання нелегованого скла LiB3O5 при низьких температурах, який пов’язаний з утворенням нерелаксованих екситонів молекулярного типу, їх міграцією з подальшим утворенням автолокалізованих екситонів поблизу точкових дефектів і їх анігіляцією. Ключові слова: триборатне скло літію, фотолюмінесценція, синхротронне випромінювання, дозиметрія

    Ключові слова: lithium triborate glass, photoluminescence, synchrotron radiation, dosimetry


© Ukrainian Journal of Physical Optics ©