Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 4


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

MECHANISMS AND PARAMETERS OF THE BINDING OF THE FLAVONOID QUERCETIN TO DNA IN AN AQUEOUS SOLUTION

S. Kutovyy, D. Fedorovich, R. Savchuk, A. Naumenko and L. Palchykivska


ABSTRACT

The interaction of the flavonoid quercetin with the DNA macromolecule in an aqueous solution has been studied through optical spectroscopy - electron absorption and fluorescence. Based on the obtained results, the dependence of the spectral characteristics on the concentration ratio N/c between the DNA base pairs and the ligand molecules was constructed. Using the system of modified equations of Scatchard and McGhee-von Hippel, the binding parameters of quercetin with DNA are determined. The binding parameters to the DNA of other molecules we studied earlier are given for comparison.

Keywords: DNA, quercetin, McGhee-von Hippel binding equation, absorption spectra, fluorescence spectra.

UDC: 535.34; 535.37

    1. Srivastava, S., Somasagara, R. R., Hegde, M., Nishana, M., Kumar, Tadi S., Srivastava, M., Choudhary, B., and Raghavan, S. C. (2016). Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis. Scientific Reports, 6, 24049. doi:10.1038/srep24049
    2. Aghababaei, F. and Hadidi, M. (2023). Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals, 16(7), 1020. doi:10.3390/ph16071020
    3. Bentz, A. B. (2009). A review of quercetin: chemistry, antioxidant properties, and bioavailability. Journal of Young Investigators, 19.
    4. David, A. V. A., Arulmoli, R. and Parasuraman, S. (2016). Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacognosy Reviews, 10(20), 84-89. doi:10.4103/0973-7847.194044
    5. Rauf, A., Imran, M., Khan, I. A., ur-Rehman, M., Gilani, S. A., Mehmood, Z., and Mubarak, M. S. (2018). Anticancer potential of quercetin: a comprehensive review. Phytotherapy Research, 32(11), 2109−2130. doi:10.1002/ptr.6155
    6. Sha,Y., Chen, X., Niu, B., and Chen, Q. (2017). The Interaction Mode of Groove Binding Between Quercetin and Calf Thymus DNA Based on Spectrometry and Simulation. Chemistry & Biodiversity, 14(10), e1700133. doi:10.1002/cbdv.201700133
    7. Kocharyan, G. H., Minasyan, S. H., and Tavadyan, L. A. (2016). Interaction of flavonoids: morin, quercetin and rutin, with DNA. Proceedings of Yerevan state University, Chemistry and Biology, 1, 49-54.
    8. Tu, B., Liu, Z. J., Chen, Z. F., Ouyang, Y., and Hu, Y. J. (2015). Understanding the structure-activity relationship between quercetin and naringenin: in vitro. RSC Advances, 5, 106171-106181. doi:10.1039/C5RA22551E
    9. Bhattacharjee S., Sengupta P. K., and Bhowmik S. (2017). Exploring the preferential interaction of quercetin with VEGF promoter G-quadruplex DNA and construction of a pH-dependent DNA-based logic gate. RSC Advances, 7, 37230-37240. doi:10.1039/C7RA05930B
    10. Marinić, M., Piantanida, I., Rusak, G., and Žinić, M. (2006). Interactions of quercetin and its lanthanide complex with double stranded DNA/RNA and single stranded RNA: Spectrophotometric sensing of poly G. Journal of Inorganic Biochemistry, 100(2): 288-298. doi:10.1016/j.jinorgbio.2005.11.013
    11. Ashraf, A. El-Bindary, Zeinab, M. Anwar, Taissir, El-Shafaie. (2021). Effect of some amino acids on the binding of quercetin and rutin flavonoids with DNA. Journal of Molecular Liquids, 334, 116131, 1-17. doi:10.1016/j.molliq.2021.116131
    12. Janjua N. K., Siddiq A., Yaqub A., Sabahat S., Qureshi R., and Haque S. (2009). Spectrophotometric analysis of flavonoid-DNA binding interactions at physiological conditions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74, 1135-1137. doi:10.1016/j.saa.2009.09.022
    13. Kanakis, C. D., Nafisi, S., Rajabi, M., Shadaloi, A., Tarantilis, P. A., Polissiou, M. G., Bariyanga J., and Tajmir-Riahi H. A. (2009). Structural analysis of DNA and RNA interactions with antioxidant flavonoids. Spectroscopy, 23(1), 29-43. doi:10.1155/2009/154321
    14. Hegde, A. H., Prashanth, S. N., and Seetharamappa, J. (2012). Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. Journal of Pharmaceutical and Biomedical Analysis, 63, 40-46. doi:10.1016/j.jpba.2012.01.034
    15. Kanakis, C. D., Tarantilis, P. A., Polissiou, M. G., Diamantoglou, S., and Tajmir-Riahi, H. A. (2005). DNA interaction with naturally occurring antioxidant flavonoids quercetin, kaempferol, and delphinidin. Journal of Biomolecular Structure and Dynamics, 22(6), 719-724. doi:10.1080/07391102.2005.10507038
    16. Plaper, A., Golob, M., Hafner, I., Oblak, M., Solmajer, T., and Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications, 306, 530-536. doi:10.1016/S0006-291X(03)01006-4
    17. Guaman Ortiz, L. M., Lombardi, P., Tillhon, M. and Scovassi, A. I. (2014). Berberine, an epiphany against cancer. Molecules, 19(8), 12349-12367. doi:10.3390/molecules190812349
    18. Seo, Y.-S., Yim, M.-J., Kim, B.-H., Kang, K.-R., Lee, S.-Y, Oh, J.-S., You, J.-S., Kim, S.-G., Yu, S.-J., Lee, G.-J., Kim, D.K., Kim, C.S., Kim, J.-S., Kim, J.-S. (2015). Berberine-induced anticancer activities in FaDu head and neck squamous cell carcinoma cells. Oncology Reports, 34(6), 3025-3034. doi:10.3892/or.2015.4312
    19. Grebinyk, A., Yashchuk, V., Bashmakova, N., Gryn, D., Hagemann, T., Naumenko, A., Kutsevol, N., Dandekar, T., Frohme M. (2019). A new triple system DNA-Nanosilver-Berberine for cancer therapy. Applied Nanoscience, 9(6), 945-956. doi:10.1007/s13204-018-0688-x
    20. Fu Ch., Guiping G., and Wang H. (2018). The Anticancer Effect of Sanguinarine: A Review. Current Pharmaceutical Design, 24(24), 2760-2764. doi:10.2174/1381612824666180829100601
    21. Ai X.,,Yu P., Peng L., Luo L., Liu J., Li S., Lai, X., Luan, F., Meng X. (2021). Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Frontiers in Pharmacology, 12(Article 762654). doi:10.3389/fphar.2021.762654
    22. Maiti, M., and Kumar, G. S. (2010). Polymorphic Nucleic Acid Binding of Bioactive Isoquinoline Alkaloids and Their Role in Cancer. Review Article. Journal of Nucleic Acids, 2010 (Article ID 593408), 23 pages. doi:10.4061/2010/593408
    23. Bashmakova, N., Kutovyy, S., Yashchuk, V., Hovorun, D., Losytskyy, V., and Zaika, L. (2009). Optical spectroscopy studies of the interaction between a number of plant alkaloids and the DNA double helix in an aqueous solution. Ukrainian Journal of Physics, 54(5), 471-479.
    24. Gumenyuk V. G., Bashmakova N. V., Kutovyy S. Y., Yashchuk V. M., and Zaika L. A. (2011). Binding parameters of alkaloids berberine and sanguinarine to DNA. Ukrainian Journal of Physics, 56(6), 525-534. doi:10.15407/ujpe56.6.524
    25. Kutovyy S. Y., Savchuk R. S., Bashmakova N. V. (2014). Binding parameters of alkaloid sanguinarine with DNA. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics, No.3, 265-272.
    26. Gumenyuk, V., Kutovyy, S., Sych, T., Savchuk, R., and Bashmakova, N. (2014). Peculiarities of the binding of some small ligands to DNA. Molecular Crystals and Liquid Crystals, 589, 242-250. doi:10.1080/15421406.2013.872856
    27. Kutovyy, S. Y., Sych, T. P., and Zaika, L. A. (2014). Features of ethydium bromide and acridine orange binding to DNA. Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics & Mathematics, No.3, 273-278.
    28. Kutovyy, S. Y., Savchuk, R. S., Bashmakova, N. V., Hovorun, D. M. and Zaika, L. A. (2018). Mechanisms and Parameters of the Binding of Amitozinoberamid to DNA in the Aqueous Solution, Ukrainian Journal of Physics, 63(8), 709-720. doi:10.15407/ujpe63.8.709
    29. Drugbank. https://www.drugbank.ca/drugs/DB04216.
    30. Domagała, S., Munshi, P., Ahmed, M., Guillot, B., and Jelsch, C. (2010). Structural analysis and multipole modelling of quercetin monohydrate - a quantitative and comparative study. Acta Crystallographica B, 67, 63-78. doi:10.1107/S0108768110041996
    31. Filip X., Grosu I.-G., Miclăuş M., and Filip C. (2013). NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin. CrystEngComm, 15, 4131−4142. doi:10.1039/c3ce40299a
    32. Filip, X. and Filip, C. (2015). Can the conformation of flexible hydroxyl groups be constrained by simple NMR crystallography approaches? The case of the quercetin solid forms. Solid State Nuclear Magnetic Resonance, 65, 21-28. doi:10.1016/j.ssnmr.2014.10.006
    33. Aparicio, S. A. (2010). Systematic computational study on flavonoids. International Journal of Molecular Sciences, 11, 2017−2038. doi:10.3390/ijms11052017
    34. Brovarets', O. O., and Hovorun, D. M. (2020). Conformational diversity of the quercetin molecule: a quantum-chemical view. Journal of Biomolecular Structures and Dynamics, 38, 2817−2836. doi:10.1080/07391102.2019.1656671
    35. Kutovyy, S., Savchuk, R., Bashmakova, N., Stanovyi, О., and Palchykivska, L. (2021). Vibrational spectra of quercetin and their interpretation with quantum-mechanical density-functional method. Ukrainian Journal of Physical Optics, 22, 181-197. doi:10.3116/16091833/22/4/181/2021
    36. Dall'Acqua, S., Miolo, G., Innocenti, G., and Caffieri, S. (2012). The Photodegradation of Quercetin: Relation to Oxidation. Molecules, 17(8), 8898-8907. doi:10.3390/molecules17088898
    37. Buchweitz, M., Kroon, P. A., Rich, G. T., and Wilde, P. J. (2016). Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate. Food Chemistry, 211, 356-364. doi:10.1016/j.foodchem.2016.05.034
    38. Raza, A., Xu, X., Xia, L., Xia, C., Tang, J., and Ouyang, Z. (2016). Quercetin-iron complex: synthesis, characterization, antioxidant, DNA binding, DNA cleavage, and antibacterial activity studies. Journal of Fluorescence, 26, 2023−2031. doi:10.1007/s10895-016-1896-y
    39. Momić, T., Savić, J. Z., Cernigoj, U., Trebše, P., and Vasić, V. M. (2007). Protolytic equilibria and photodegradation of quercetin in aqueous solution. Collections of Czechoslovak Chemical Communications, 72, 1447-60. doi:10.1135/cccc20071447
    40. Jurasekova, Z., Domingo, C., Garcia-Ramos, J. V., and Sanchez-Cortes, S. (2014). Effect of pH on the chemical modification of quercetin and structurally related flavonoids characterized by optical (UV-visible and Raman) spectroscopy. Physical Chemistry Chemical Physics, 16(25), 12802-12811. doi:10.1039/C4CP00864B
    41. Cornard, J. P., Dangleterre, L., and Lapouge, C. (2005). Computational and Spectroscopic Characterization of the Molecular and Electronic Structure of the Pb(II)-Quercetin Complex. The Journal of Physical Chemistry A, 109(44), 10044-10051. doi:10.1021/jp053506i
    42. Scatchard, G. (1949). The Attractions of Proteins for Small Molecules an Ions. Annals of the New York Academy of Sciences, 51, 660-672. doi:10.1111/j.1749-6632.1949.tb27297.x
    43. McGhee, J. D., and von Hippel, P. H. (1974). Theoretical Aspects of DNA-Protein Interactions: Co-operative and Non-co-operative Binding of Large Ligands to a One-dimensional Homogeneous Lattice. Journal of Molecular Biology, 86, 469-489. doi:10.1016/0022-2836(74)90031-X

    Взаємодію флавоноїду кверцетину з макромолекулою ДНК у водному розчині досліджено методами оптичної спектроскопії – електронного поглинання та флуоресценції. На основі отриманих результатів побудовано залежності спектральних характеристик від відношення концентрацій N/c між парами основ ДНК і молекулами ліганду. За допомогою системи модифікованих рівнянь Скетчарда і МакГі-фон Гіппеля визначено параметри зв'язування кверцетину з ДНК. Користуючись системою модифікованих рівнянь Скетчарда та МакГі-фон Хіппеля, визначено параметри зв'язування кверцетину з ДНК. Для порівняння наведено параметри зв'язування з ДНК інших досліджених нами раніше молекул. Ключові слова: ДНК, кверцетин, рівняння зв’язування МакГі - фон Хіппеля, спектри поглинання, спектри флуоресценції.

    Ключові слова: ДНК, кверцетин, рівняння зв’язування МакГі - фон Хіппеля, спектри поглинання, спектри флуоресценції.


© Ukrainian Journal of Physical Optics ©