Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 3


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

DEMULTIPLEXING OF OPTICAL BEAM WITH USING OF RAMAN-NATH ACOUSTO-OPTIC DIFFRACTION AND SINGULAR ACOUSTIC BEAM

1I. Skab, 1M. Kostyrko, 3B. Sulanov, 1,2O. Krupych and 1R. Vlokh

1Vlokh Institute of Physical Optics, 23 Dragomanov Str., 79005, Lviv, Ukraine, vlokh@ifo.lviv.ua
2Department of optoelectronics and information technologies of the Ivan Franko National University of Lviv, Generala Tarnavskogo Str. 107, Lviv, 79017, Ukraine
3Vacoms LLC, 1201 North Market Str., Suite 111, Wilmington, DE 19801

ABSTRACT

It has been shown that the acousto-optic Raman-Nath diffraction on the acoustic wave, which bears an acoustic vortex, is accompanied by the appearance of the diffraction maxima that bear an optical vortex. The charge of the vortices that appears as a result of the diffraction corresponds to the order of diffraction if the incident optical beam is the Gaussian beam and the charge of the acoustic vortex is equal to unity. When the incident optical vortex beam takes part in this process, the charge of the diffracted optical vortices is shifted on the charge value of the incident optical beam. As a result of the analysis, we obtained the relation for the charge of vortices of diffraction maxima. It has been found that the described effect can be used for controlled demultiplexing.

Keywords: demultiplexing, orbital angular momentum, optical vortex, acoustic vortex, Raman-Nath diffraction

UDC: 535.4+534.2

    1. Ren, Y., Wang, Z., Liao, P., Li, L., Xie, G., Huang, H., Zhao, Z., Yan, Y., Ahmed, N. & Willner, A. E. (2016). Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Optics Letters, 41(3), 622-625. doi:10.1364/OL.41.000622
    2. Wang, J., Yang, J. Y., Fazal, I. M., Ahmed, N., Yan, Y., Huang, H., . Ren, Y., Yue, Y., Dolinar, S., Tur, M. & Willner, A. E. (2012). Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 6(7), 488-496. doi:10.1038/nphoton.2012.138
    3. Jørgensen, A. A., Kong, D., Henriksen, M. R., Klejs, F., Ye, Z., Helgason, Ò. B., H. E. Hansen, Hu, H., Yankov, M., Forchhammer, S., Andrekson, P., Larsson, A., Karlsson, M., Schröder, J., Sasaki, Y., Aikawa, K., Thomsen, J. W., Morioka, T., Galili, M., Torres-Company V. & Oxenløwe, L. K. (2022). Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nature Photonics, 16(11), 798-802. doi:10.1038/s41566-022-01082-z
    4. Corcoran, B., Tan, M., Xu, X., Boes, A., Wu, J., Nguyen, T. G., Chu, S.T., Little, B.T., Morandotti, R., Mitchell A. & Moss, D. J. (2020). Ultra-dense optical data transmission over standard fibre with a single chip source. Nature Communications, 11(1), 2568. doi:10.1038/s41467-020-16265-x
    5. Tamburini, F., Thidé, B., & Della Valle, M. (2020). Measurement of the spin of the M87 black hole from its observed twisted light. Monthly Notices of the Royal Astronomical Society: Letters, 492(1), L22-L27. doi:10.1093/mnrasl/slz176
    6. Krenn, M., Handsteiner, J., Fink, M., Fickler, R., Ursin, R., Malik, M., & Zeilinger, A. (2016). Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences, 113(48), 13648-13653. doi:10.1073/pnas.1612023113
    7. Huang, H., Milione, G., Lavery, M. P., Xie, G., Ren, Y., Cao, Y., Ahmed, N., Nguyen, T. A., Nolan, D.A., Li, M.-J., Tur, M., Alfano R.R. & Willner, A. E. (2015). Mode division multiplexing using an orbital angular momentum mode sorter and MIMO-DSP over a graded-index few-mode optical fibre. Scientific Reports, 5(1), 14931. doi:10.1038/srep14931
    8. Ma, Q., & Zhao, H. (2021). Capacity of a Radio Vortex Communication System Using a Partial Angular Aperture Receiving Scheme under the Horizontal Non-Kolmogorov Model. Sensors, 21(5), 1778. doi:10.3390/s21051778
    9. Shi, C., Dubois, M., Wang, Y., & Zhang, X. (2017). High-speed acoustic communication by multiplexing orbital angular momentum. Proceedings of the National Academy of Sciences, 114(28), 7250-7253. doi:10.1073/pnas.1704450114
    10. Soskin, M. S., & Vasnetsov, M. V. (2001). Singular optics. Progress in Optics, 42(4), 219-276. doi:10.1016/S0079-6638(01)80018-4
    11. Abramochkin, E., & Volostnikov, V. (1991). Beam transformations and nontransformed beams. Optics Communications, 83(1-2), 123-135. doi:10.1016/0030-4018(91)90534-K
    12. Heckenberg, N. R., McDuff, R., Smith, C. P., & White, A. G. (1992). Generation of optical phase singularities by computer-generated holograms. Optics Letters, 17(3), 221-223. doi:10.1364/OL.17.000221
    13. Marrucci, L., Manzo, C., & Paparo, D. (2006). Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Physical Review Letters, 96(16), 163905.A. Desyatnikov, T.A. doi:10.1103/PhysRevLett.96.163905
    14. Fadeyeva, T. A., Shvedov, V. G., Izdebskaya, Y. V., Volyar, A. V., Brasselet, E., Neshev, D. N., Desyatnikov, A.S, Krolikowski, W. & Kivshar, Y. S. (2010). Spatially engineered polarization states and optical vortices in uniaxial crystals. Optics Express, 18(10), 10848-10863. doi:10.1364/OE.18.010848
    15. Yu, V., Kryvyy, T., Skab, I., & Vlokh, R. (2019, September). Control of Optical Vortices via Parametric Optical Effects. In 2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL) (pp. 15-17). IEEE. doi:10.1109/CAOL46282.2019.9019556
    16. Delaney, S., Sánchez-López, M. M., Moreno, I., & Davis, J. A. (2017). Arithmetic with q-plates. Applied Optics, 56(3), 596-600. doi:10.1364/AO.56.000596
    17. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. B., & Capasso, F. (2017). Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358(6365), 896-901. doi:10.1126/science.aao5392
    18. Arbabi, A., Horie, Y., Bagheri, M., & Faraon, A. (2015). Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nature Nanotechnology, 10(11), 937-943. doi:10.1038/nnano.2015.186
    19. Huang, Y. W., Rubin, N. A., Ambrosio, A., Shi, Z., Devlin, R. C., Qiu, C. W., & Capasso, F. (2019). Versatile total angular momentum generation using cascaded J-plates. Optics Express, 27(5), 7469-7484. doi:10.1364/OE.27.007469
    20. Zhang, W., Li, Y., Sun, T., Shao, W., Zhu, F., & Wang, Y. (2016). Demodulation for multi vortex beams based on composite diffraction hologram. Optics Communications, 381, 377-383. doi:10.1016/j.optcom.2016.07.029
    21. Yang, C. H., Chen, Y. D., Wu, S. T., & Fuh, A. Y. G. (2016). Independent manipulation of topological charges and polarization patterns of optical vortices. Scientific Reports, 6(1), 31546. doi:10.1038/srep31546
    22. Qiao, Z., Wan, Z., Xie, G., Wang, J., Qian, L., & Fan, D. (2020). Multi-vortex laser enabling spatial and temporal encoding. PhotoniX, 1, 1-14. doi:10.1186/s43074-020-00013-x
    23. Zhu, L., & Wang, J. (2019). A review of multiple optical vortices generation: methods and applications. Frontiers of Optoelectronics, 12, 52-68. doi:10.1007/s12200-019-0910-9
    24. Kostyrko, M., Krupych, O., Vasylkiv, Y., Skab, I., & Vlokh, R. (2021). Topological defects related to linear dichroism. Generation of vector-vortex beams. Optik, 230, 166335. doi:10.1016/j.ijleo.2021.166335
    25. Du, J., & Wang, J. (2018). Dielectric metasurfaces enabling twisted light generation/detection/(de) multiplexing for data information transfer. Optics Express, 26(10), 13183-13194. doi:10.1364/OE.26.013183
    26. Kostyrko, M., Skab, I., & Vlokh, R. (2021). Angular-momentum exchange among acoustic and optical waves at the collinear acousto-optic diffraction. Journal of Optics, 23(6), 064003. doi:10.1088/2040-8986/abfa72
    27. Dashti, P.Z., Alhassen, F., and Lee, H.P. (2006). Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Physal Review Letters, 96, 043604. doi:10.1103/PhysRevLett.96.043604
    28. Kostyrko, M., Vasylkiv, Y., Skab, I., & Vlokh, R. (2021). Collinear acousto-optic interaction of optical and acoustic vector beams. Summation of the polarization orders of topological defects. Optik, 244, 167552. doi:10.1016/j.ijleo.2021.167552
    29. Martynyuk-Lototska, I., Vasylkiv, Y., Dudok, T., Skab, I., & Vlokh, R. (2018). Acoustooptic operation of optical vortex beams. Optik, 155, 179-184. doi:10.1016/j.ijleo.2017.11.015
    30. Dixon, R. W. (1967). Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners. Journal of Applied Physics, 38(13), 5149-5153. doi:10.1063/1.1709293
    31. Fukumoto, A., & Watanabe, A. (1970). Liquid materials and their figures of merit as acoustooptical deflector. Japanese Journal of Applied Physics, 9(6), 662. doi:10.1143/JJAP.9.662
    32. Martynyuk-Lototska, I., Kostyrko, M., Adamenko, D., Skab, I., & Vlokh, R. (2023). Generation of acoustic vortices and acousto-optic interactions with acoustic vortex beams. Applied Optics, 62(14), 3643-3648. doi:10.1364/AO.483637
    33. Watson, G. N. (1922). A treatise on the theory of Bessel functions. The University Press.

    Показано, що акустооптична дифракція Рамана-Ната на акустичній хвилі, яка переносить акустичний вихор, супроводжується появою дифракційних порядків, які переносять оптичні вихори. Заряд вихорів, що виникають в результаті дифракції, відповідає порядку дифракції, якщо падаючий оптичний промінь є гауссівським, а заряд акустичного вихору дорівнює одиниці. Коли в цьому процесі приймає участь падаючий оптичний вихровий пучок, заряд дифрагованих оптичних вихорів зміщується на значення заряду падаючого оптичного променя. У результаті аналізу отримано співвідношення для заряду вихорів дифракційних максимумів. Встановлено, що описаний ефект можна використовувати для керованого демультиплексування.

    Ключові слова: демультиплексування, орбітальний кутовий момент, оптичний вихор, акустичний вихор, дифракція Рамана-Ната


© Ukrainian Journal of Physical Optics ©