Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 1


ISSN 1609-1833 (Print)

A NEW FILTERLESS W-BAND MILLIMETER WAVE SIGNALS GENERATION SCHEME WITH FREQUENCY OCTUPLING BASED ON CASCADED MACH–ZEHNDER MODULATORS

1,2,3,*Dongfei Wang, 4,5Yu Zhang, 1Zufang Yang, 1Lan Zhang, 1Baohong Wu, 2Xiaokun Yang, 6Shuxia Yan and 1,7Xiangqing Wang

1School of Artificial Intelligence, Wuhan Technology and Business University, Wuhan, 430065, China, wdfchina@126.com
2School of Electronics and Information, Nanchang Institute of Technology, Nanchang, Jiangxi Province, 330044, China
3School of Information Engineering, Beijing Institute of Graphic Communication, Beijing 102600 China
4Jincheng Research Institute of Opto-mechatronics Industry, Jincheng 048000, China
5Shanxi Key Laboratory of Advanced Semiconductor Optoelectronic Devices and Integrated Systems, Jincheng 048000, China
6Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tianjin 300387 China
7Henan Key Laboratory of Visible Light Communications, Zhengzhou, China
*wdfchina@126.com

ABSTRACT

The existing frequency bands, such as the C-band and L-band, are becoming increasingly crowded and cannot meet the growing demand for high-speed data rate services. To overcome spectrum congestion, meet future business needs, and overcome the bottlenecks of traditional electronic methods, we have modified an approach for generating W-band mm-wave signals with octupling frequency without the need for an optical filter. One integrated modulator consisting of two push-pull Mach–Zehnder modulators (MZM) in series is employed to achieve W-band signal generation. The octupling frequency signal generation depends on ±4th optical sidebands to beat frequency in the photodetector. For capturing ±4th optical sidebands, the bias point of the two push-pull MZMs needs work at the peak point, and the modulation index of the two MZMs should be simultaneously set to 2.4. We have conducted detailed mathematical derivation and computer simulation for the scheme, demonstrating its correctness. The results show that the optical sideband suppression ratio is not less than 45.73 dB, and the RF sideband suppression ratio can reach 37.64 dB.

Keywords: W-band, mm-wave signal generation, frequency octupling, Mach-Zehnder modulator

UDC: 535.8

    1. Dahiya, S. (2023). Performance analysis of millimeter wave-based radio over fiber system for next generation networks. Journal of Optics, 1-9. doi:10.1007/s12596-023-01472-8
    2. Zheng, K., Yang, H., Ying, Z., Wang, P., & Hanzo, L. (2023). Vision-assisted millimeter-wave beam management for next-generation wireless systems: Concepts, solutions, and open challenges. IEEE Vehicular Technology Magazine. PP(99), 2-12. doi:10.1109/MVT.2023.3262907
    3. Song, H., Huang, C., Li, H., Dai, L., Liu, Z., Yang, Y., Cheng, M., Yang, Q., Tang, M., Liu, D., & Deng, L. (2021). Asymmetric dual-SSB modulation for photonic co-frequency mm-wave signals generation and DSP-free receiver. Optics Letters, 46(17), 4366-4369. doi:10.1364/OL.437746
    4. Li, J. L., Zhao, F., & Yu, J. (2020). D-band millimeter wave generation and transmission though radio-over-fiber system. IEEE Photonics Journal, 12(2), 1-8. doi:10.1109/JPHOT.2020.2983011
    5. Wang, D., Wang, X., Yang, X., Gao, F., Zhang, L., Yang, Z., & Wu, B. (2023). Photonic filter-free adjustable frequency sextupling scheme for V-band vector mm-wave signal generation based on a DP-MZM with precoding. Optics Communications, 129633. doi:10.1016/j.optcom.2023.129633
    6. Liu, C., Zhou, W., & Yu, J. (2022). Photonics aided vector millimeter-wave signal generation without DAC at W-band. Optical Fiber Technology, 70, 102883. doi:10.1016/j.yofte.2022.102883
    7. Zhao, L., Zhang, R., Zhou, W., Shen, S., Xiao, J., Chang, G. K., & Yu, J. (2021). Probabilistic shaping with pre-equalization in W-band mm-wave communication system with heterodyne coherent detection. Optical Fiber Technology, 61, 102345. doi:10.1016/j.yofte.2020.102345
    8. Althuwayb, A. A., Alibakhshikenari, M., Virdee, B. S., Benetatos, H., Rashid, N., Kaaniche, K., Atitallah, A. B. & Elhamrawy, O. I. (2023). Design technique to mitigate unwanted coupling in densely packed radiating elements of an antenna array for electronic devices and wireless communication systems operating in the millimeter-wave band. AEU-International Journal of Electronics and Communications, 159, 154464. doi:10.1016/j.aeue.2022.154464
    9. Oyerinde, O. O., Flizikowski, A., & Marciniak, T. (2022). Compressive sensing-based channel estimation schemes for wideband millimeter wave wireless communication systems. Computers and Electrical Engineering, 104, 108452. doi:10.1016/j.compeleceng.2022.108452
    10. Arsalan, M., Santra, A., & Issakov, V. (2022). RadarSNN: A resource efficient gesture sensing system based on mm-wave radar. IEEE Transactions on Microwave Theory and Techniques, 70(4), 2451-2461. doi:10.1109/TMTT.2022.3148403
    11. Ma, Z., Choi, J., & Sohn, H. (2023). Continuous bridge displacement estimation using millimeter-wave radar, strain gauge and accelerometer. Mechanical Systems and Signal Processing, 197, 110408. doi:10.1016/j.ymssp.2023.110408
    12. Gillani, N., Arslan, T., & Mead, G. (2023). An Unobtrusive Method for Remote Quantification of Parkinson's and Essential Tremor using mm-Wave Sensing. IEEE Sensors Journal. 23(9), 10118-10131. doi:10.1109/JSEN.2023.3261111
    13. Ni, Z., & Huang, B. (2022). Gait-based person identification and intruder detection using mm-wave sensing in multi-person scenario. IEEE Sensors Journal, 22(10), 9713-9723. doi:10.1109/JSEN.2022.3165207
    14. Murphy, K. S. J., Appleby, R., Sinclair, G., McClumpha, A., Tatlock, K., Doney, R., & Hutcheson, I. (2002, October). Millimetre wave aviation security scanner. In Proceedings. 36th Annual 2002 International Carnahan Conference on Security Technology (pp. 162-166). IEEE.
    15. Tajdini, M. M., & Rappaport, C. M. (2021). Nominal body contour reconstruction for millimeter-wave characterization of suicide bomber explosives. IEEE Transactions on Antennas and Propagation, 70(4), 2960-2968. doi:10.1109/TAP.2021.3118805
    16. Li, B., Zhang, L., Zhang, Q., Xin, X., Pan, X., Zhang, W., Tian, Q., Tao, Y., Liu, N., Wang, Y. & Tian, F. (2019). Flexible photonic generation of frequency multiplication millimeter-wave vector signal based on dynamic pre-coding algorithm with dispersion compensation. Optics Communications, 435, 232-238. doi:10.1016/j.optcom.2018.11.043
    17. Chen, H., Ning, T., Li, J., Pei, L., Yuan, J., Zheng, J., & Liu, L. (2018). Optical millimeter-wave generation with tunable multiplication factors and reduced power fluctuation by using cascaded modulators. Optics & Laser Technology, 103, 206-211. doi:10.1016/j.optlastec.2018.01.031
    18. Baskaran, M., Prabakaran, R., & Gayathri, T. S. (2019). Photonic generation of frequency 16-tupling Millimeter wave signal using polarization property without an optical filter. Optik, 184, 348-355. doi:10.1016/j.ijleo.2019.04.077
    19. Wang, D., Tang, X., Xi, L., Zhang, X., & Fan, Y. (2019). A filterless scheme of generating frequency 16-tupling millimeter-wave based on only two MZMs. Optics & Laser Technology, 116, 7-12. doi:10.1016/j.optlastec.2019.03.009
    20. Chen, X., Xia, L., & Huang, D. (2017). A filterless 24-tupling optical millimeter-wave generation and RoF distribution. Optik, 147, 22-26. doi:10.1016/j.ijleo.2017.08.065
    21. Ramos, R. T., & Seeds, A. J. (1992). Fast heterodyne optical phase-lock loop using double quantum well laser diodes. Electronics letters, 1(28), 82-83. doi:10.1049/el:19920050
    22. Cliché, J. F., Shillue, B., Tetu, M., & Poulin, M. (2007, June). A 100-GHz-tunable photonic millimeter wave synthesizer for the Atacama Large Millimeter Array radiotelescope. In 2007 IEEE/MTT-S International Microwave Symposium (pp. 349-352). IEEE. doi:10.1109/MWSYM.2007.380442
    23. Baskaran, M., & Madhan, M. G. (2014). A novel approach for simultaneous millimeter wave generation and high bit rate data transmission for Radio over Fiber (RoF) systems. Optik, 125(21), 6347-6351. doi:10.1016/j.ijleo.2014.07.012
    24. Zheng, H., Liu, S., Li, X., Wang, W., & Tian, Z. (2009). Generation and transmission simulation of 60 G millimeter-wave by using semiconductor optical amplifiers for radio-over-fiber systems. Optics Communications, 282(22), 4440-4444. doi:10.1016/j.optcom.2009.08.023
    25. Han, S. H., & Park, C. S. (2011, July). Photonic millimeter-wave carrier generation using stimulated Brillouin scattering and four wave mixing for MMW-over-fiber system. In 16th Opto-Electronics and Communications Conference (pp. 539-540). IEEE.
    26. Wang, D., Xi, L., Tang, X., Zhang, X., & Gao, N. (2020). A simple photonic precoding-less scheme for vector millimeter-wave signal generation based on a single phase modulator. Results in Physics, 19, 103412. doi:10.1016/j.rinp.2020.103412
    27. Li, X., Xu, Y., Xiao, J., & Yu, J. (2016). W-band millimeter-wave vector signal generation based on precoding-assisted random photonic frequency tripling scheme enabled by phase modulator. IEEE Photonics Journal, 8(2), 1-10. doi:10.1109/JPHOT.2016.2550320
    28. Zhou, W., & Qin, C. (2017). Simultaneous generation of 40, 80 and 120 GHz optical millimeter-wave from one Mach-Zehnder modulator and demonstration of millimeter-wave transmission and down-conversion. Optics Communications, 398, 101-106. doi:10.1016/j.optcom.2017.04.043
    29. Wang, Y., Liu, C., & Yu, J. (2020). Dispersion-tolerant millimeter-wave signal generation by a single modulator. Optics Communications, 475, 126204. doi:10.1016/j.optcom.2020.126204
    30. Zhu, Z., Zhao, S., Yao, Z., Tan, Q., Li, Y., Chu, X., Shi, L. & Zhang, X. (2012). Optical millimeter-wave signal generation by frequency quadrupling using one dual-drive Mach-Zehnder modulator to overcome chromatic dispersion. Optics Communications, 285(13-14), 3021-3026. doi:10.1016/j.optcom.2012.01.078
    31. Li, X., Yu, J., Zhang, Z., Xiao, J., & Chang, G. K. (2015). Photonic vector signal generation at W-band employing an optical frequency octupling scheme enabled by a single MZM. Optics Communications, 349, 6-10.. doi:10.1016/j.optcom.2015.03.044
    32. Zhu, Z., Zhao, S., Zheng, W., Wang, W., & Lin, B. (2015). Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators. Applied optics, 54(32), 9432-9440. doi:10.1364/AO.54.009432
    33. Shang, Y., Feng, Z., Cao, C., Huang, Z., Wu, Z., Xu, X., & Geng, J. (2022). A using remodulation filterless scheme of generating frequency 32-tupling millimeter-wave based on two DPMZMs. Optics & Laser Technology, 148, 107793. doi:10.1016/j.optlastec.2021.107793
    34. Zhang, W., Wen, A., Gao, Y., Shang, S., Zheng, H., & He, H. (2017). Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM. Optics & Laser Technology, 97, 229-233. doi:10.1016/j.optlastec.2017.07.007
    35. Chen, X., Li, Z., Ba, W., Dai, S., Liang, J., & Xiao, H. (2023). A novel method to generate and transmit 40-tupling frequency millimeter wave over fiber based on remodulation of MZMs. Heliyon, 9(3), e14221. doi:10.1016/j.heliyon.2023.e14221
    36. Wang, C., Song, K., Li, M., Yi, Y., Zhou, M., & Wu, J. Generation of frequency 16-tupling millimeter wave without filtering based on cascaded Mach-Zehnder modulator. Microwave and Optical Technology Letters.
    37. Shanmugapriya, G. (2017). Frequency16-tupled optical millimeter wave generation using dual cascaded MZMs and 2.5 Gbps RoF transmission. Optik, 140, 338-346. doi:10.1016/j.ijleo.2017.04.074
    38. Chen, X., Li, Z., Liu, X., Ba, W., & Dai, S. (2022). Research on 32-tupling frequency terahertz wave generation based on Mach-Zehnder modulators cascaded. Optik, 270, 170027. doi:10.1016/j.ijleo.2022.170027
    39. Li, Y., Zhu, R., Xu, E., & Zhang, Z. (2023). Frequency-Doubling Brillouin Optoelectronic Oscillator with Variable Optical Attenuator. IEEE Photonics Technology Letters. doi:10.1109/LPT.2023.3319949
    40. Ma, J., Wen, A., & Tu, Z. (2019). Filter-free photonic microwave upconverter with frequency quadrupling. Applied Optics, 58(28), 7915-7920. doi:10.1364/AO.58.007915
    41. Zhang, W., Wen, A., Gao, Y., Shang, S., Zheng, H., & He, H. (2017). Filterless frequency-octupling mm-wave generation by cascading Sagnac loop and DPMZM. Optics & Laser Technology, 97, 229-233. doi:10.1016/j.optlastec.2017.07.007
    42. Chen, Y., Wen, A., & Shang, L. (2010). Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach-Zehnder modulators. Optics Communications, 283(24), 4933-4941. doi:10.1016/j.optcom.2010.07.046

    Існуючі діапазони частот, такі як C-діапазон і L-діапазон, стають все більш переповненими і не можуть задовольнити зростаючий попит на високошвидкісні послуги передачі даних. Щоб подолати перевантаження спектру та задовольнити майбутні потреби, а також подолати вузькі місця традиційних електронних методів, ми модифікували підхід для генерації сигналів мм-хвиль W-діапазону з восьмикратним збільшенням частоти без використання оптичного фільтра. Для генерації сигналу W-діапазону використовується один вбудований модулятор, що складається з двох послідовно з’єднаних двотактних модуляторів Маха-Цендера (ММЦ). Генерація сигналу з восьмикратним помноженням частоти залежить від ±4 оптичних бічних смуг і смуги частот биття фотодетектора. Для захоплення ±4-ї оптичної бічної смуги точка зміщення двох двотактних ММЦ повинна відповідати піковій точці, а індекс модуляції двох МMЦ має бути одночасно встановлений на 2,4. Ми провели детальний математичний аналіз та комп’ютерне моделювання запропонованої схеми і продемонстрували її коректність. Показано, що коефіцієнт оптичного пригнічення бокової смуги становить не менше 45,73 дБ, а коефіцієнт пригнічення бокової радіочастотної смуги може досягати 37,64 дБ.

    Ключові слова: W-діапазон, генерація сигналу міліметрового діапазону, восьмикратне збільшення частоти, модулятор Маха–Цендера


© Ukrainian Journal of Physical Optics ©