Ukrainian Journal of Physical Optics


2024 Volume 25, Issue 1


ISSN 1609-1833 (Print)

COMPOSITE VORTEX BEAM GENERATION USING DICHROIC NEMATIC LIQUID CRYSTAL CELL WITH TOPOLOGICAL DEFECT

O.Krupych1,2, T.Dudok1, O.Mys1, M.Kostyrko1, I.Skab1, Yu.Nastishin3, T.Lavrut3, Yu.Chahan3, V.Nazarenko4, O.Kurochkin4 and R.Vlokh1

1Vlokh Institute of Physical Optics, 23 Dragomanov Str., 79005, Lviv, Ukraine
2Ivan Franko Lviv National University, Department of optoelectronics and information technologies, 107 Tarnavsy Str, 79012, Lviv, Ukraine
3Hetman Petro Sahaidachnyi National Army Academy, 32, Heroes of Maidan St., Lviv, 79026, Ukraine
4Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauky Aven., 03028, Kyiv, Ukraine

ABSTRACT

We demonstrate both theoretically and experimentally that a linearly polarized optical beam incident on a linearly dichroic nematic liquid crystal cell with a topological defect of the topological strength q and linear dichroism, transforms into a composite vector beam consisting of elementary vector beams with the polarization singularity orders m=2q and m=q. Consequently, it has been proved that due to the linear dichroism a liquid crystal defect of the topological strength q=1 transforms an incident circularly polarized beam into a composite vortex beam consisting of the double-charged vortex beam and vector-vortex beam with polarization order and topological charge that are equal to unity.

Keywords: composite vortex beam, composite vector beam, topological defect, dichroism, liquid crystals

UDC: 535.5

    1. Soskin, M.S., Vasnetsov, M.V. (2001). Singular optics. Progress in Optics, 42 (4), 219-276. doi:10.1016/s0079-6638(01)80018-4
    2. Swartzlander, G. A. Gahagan, K. T. (1996). Optical vortex trapping of particles. Optics Letters, 21 (11), 827–829. doi:10.1364/ol.21.000827
    3. Friese, M. E. J. Heckenberg, N. R., Rubinsztein-Dunlop, H. (1998). Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394 (6691), 348–350. doi:10.1038/28566
    4. Eitan Edrei and Giuliano Scarcell. (2020). Optical focusing beyond the diffraction limit via vortex-assisted transient microlenses. ACS Photonics, 7(4), 914–918. doi:10.1021/acsphotonics.0c00109
    5. DiVincenzo, D. P. (1995). Quantum Computation. Science, 270 (5234), 255–261. doi:10.1126/science.270.5234.255
    6. Kilin, S. Ya. (1999). Quantum information. Soviet Physics Uspekhi. 42, 435–452 doi:10.1070/pu1999v042n05abeh000542
    7. Boschi, D., Branca, S., De Martini, F., Hardy, L., and Popescu, S., (1998). Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters. 80, 1121. doi:10.1103/physrevlett.80.1121
    8. Sujuan Huang, Zhuang Miao, Chao He, Fufei Pang, Yingchun Li, Tingyun Wa. (2016). Composite vortex beams by coaxial superposition of Laguerre–Gaussian beams. Optics and Lasers in Engineering. 78, 132–139. doi:10.1016/j.optlaseng.2015.10.008
    9. Yuehan Tian, Lulu Wang, Gaoyan Duan, Li Yu. (2021). Multi-trap optical tweezers based on composite vortex beams. Optics Communications. 485, 126712. doi:10.1016/j.optcom.2020.126712
    10. Hamid R. Hamedi, Viačeslav Kudriašov, Ning Jia, Jing Qian, and Gediminas Juzeliūnas. (2021). Ferris wheel patterning of Rydberg atoms using electromagnetically induced transparency with optical vortex fields. Optics Letters, 46(17), 4204-4207. doi:10.1364/ol.427000
    11. Jian Wang, Jeng-Yuan Yang, Irfan M. Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiong Ren, Yang Yue, Samuel Dolinar, Moshe Tur and Alan E. Willner. (2012). Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics. 6, 488–496. doi:10.1038/nphoton.2012.138
    12. Mateusz Szatkowski, Jan Masajada , Ireneusz Augustyniak, Klaudia Nowacka. (2020). Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing. Optics Communications. 463, 125341. doi:10.1016/j.optcom.2020.125341
    13. Yang Ming, Yuttana Intaravanne, Hammad Ahmed, Mitchell Kenney, Yan-qing Lu, and Xianzhong Chen. (2022). Creating composite vortex beams with a single geometric metasurface. Advanced Materials. 34, 2109714. doi:10.1002/adma.202109714
    14. Nirjhar Kumar, Ankit Arora, and Ananth Krishnan, (2021). Single-shot generation of composite optical vortex beams using hybrid binary fork gratings. Optics Express. 29(21), 33703. doi:10.1364/oe.437659
    15. Myroslav Kostyrko, Oleh Krupych, Yuriy Vasylkiv, Ihor Skab, Rostyslav Vlokh. (2021). Topological defects related to linear dichroism. Generation of vector-vortex beams. Optik, 230, 166335. doi:10.1016/j.ijleo.2021.166335
    16. Azzam, R. M. A., Bashara, N. M. (1977). Ellipsometry and Polarized Light. North-Holland Publishing Company.
    17. Nastishin, Yu. A., Dudok ,T., Savaryn, V., Kostyrko, M., Vasylkiv, Yu., Hrabchak, V., Ryzhov, Ye. and Vlokh R. (2021). Liquid crystal textures and optical characterization of a dye-doped nematic for generating vector beams. Ukrainian Journal of Physical Optics. 22(3), 151-164. doi:10.3116/16091833/22/3/151/2021
    18. Vlokh, R., Krupych, O., Kostyrko, M., Netolya, V., and Trach, I. (2001). Gradient thermooptical effect in LiNbO3 crystals. Ukrainian Journal of Physical Optics. 2, 154–158. doi:10.3116/16091833/2/3/154/2001

    Теоретично та експериментально показано, що при падінні лінійно поляризованого оптичного пучка на рідкокристалічну комірку з топологічним дефектом з силою, рівною q та лінійним дихроїзмом, пучок, що виходить, містить композитний векторний пучок з елементарними векторними пучками з порядками поляризації m=2q і m=q. Таким чином, доведено, що при q=1 для падаючого циркулярно поляризованого пучка наявність дихроїзму приводить до появи композитного вихрового пучка, що складається з вихрового пучка з подвійним зарядом та векторно-вихрового пучка з порядком поляризації та топологічним зарядом, що дорівнюють одиниці.

    Ключові слова: composite vortex beam, composite vector beam, topological defect, dichroism, liquid crystals


© Ukrainian Journal of Physical Optics ©