Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 4


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Centrifugation-based separation of triangular silver nanoplates from multi-shaped colloidal silver nanoparticles for fabrication of surface-enhanced Raman-scattering substrates

1Phetsahai A., 2Eiamchai P. , 1*Thamaphat K. and 1Limsuwan P.

1Green Synthesis and Application Laboratory, Applied Science and Engineering for Social Solution Research Unit, Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand. e-mail: kheamrutai.tha@kmutt.ac.th
22 Opto-Electrochemical Sensing Research Team, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

ABSTRACT

We synthesize and separate triangular silver nanoplates (TSNPs) from a mixture of colloidal silver nanoparticles of different shapes and sizes, aiming at fabrication of substrates for a surface-enhanced Raman scattering (SERS). The TSNPs are successfully synthesized via a photochemical process involving Ag nanoseeds. This is confirmed by the UV-visible spectroscopy and transmission electron-microscopy analyses. Centrifugation-based separation techniques are employed to isolate the TSNPs and minimize the other nanoparticle morphologies, thus resulting in a good SERS performance. The separated TSNPs manifest a remarkable sensitivity, with the detection limit amounting to 10–12 M in the case of Rhodamine 6G molecules. A linear relationship between the Rhodamine 6G concentration and the Raman-peak intensity demonstrates a great potential of our SERS technique. Hence, our study combines a successful synthesis and separation of the TSNPs with demonstration of their efficient SERS performance. The latter offers new possibilities for the ultrasensitive trace-level detection of substances. These findings contribute to the development of reliable SERS measurements and the advance in the field of nanomaterial-based sensing techniques.

Keywords: triangular silver nanoplates, centrifugation-based separation, surface-enhanced Raman scattering, photochemical synthesis

UDC: 535.375.5+546

    1. 1. Jones R R, Hooper D C, Zhang L, Wolverson D and Valev V K, 2019. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14: 231. doi:10.1186/s11671-019-3039-2
    2. Pence I and Mahadevan-Jansen A, 2016. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 45: 1958-1979. doi:10.1039/C5CS00581G
    3. Yuan K, Jurado-Sánchez B and Escarpa A, 2022. Nanomaterials meet surface-enhanced Raman scattering towards enhanced clinical diagnosis: a review. J. Nanobiotechnol. 20: 537. doi:10.1186/s12951-022-01711-3
    4. Zhao L, Gu W, Zhang C, Shi X and Xian Y, 2016. In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions. J. Colloid Interface Sci. 465: 279-285. doi:10.1016/j.jcis.2015.11.073
    5. Muehlethaler C, Leona M and Lombardi J R, 2016. Review of surface enhanced Raman scattering applications in forensic science. Analyt. Chem. 88: 152-169. doi:10.1021/acs.analchem.5b04131
    6. Petryayeva E and Krull U J, 2011. Localized surface plasmon resonance: nanostructures, bioassays and biosensing - a review. Anal. Chim. Acta. 706: 8-24. doi:10.1016/j.aca.2011.08.020
    7. Pustovit V N and Shahbazyan T V, 2005. Quantum-size effects in SERS from noble-metal nanoparticles. Microelectron. J. 36: 559-563. doi:10.1016/j.mejo.2005.02.069
    8. Cong S, Liu X, Jiang Y, Zhang W and Zhao Z, 2020. Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. Innovation (Camb). 1: 100051. doi:10.1016/j.xinn.2020.100051
    9. Chen T, Wang H, Chen G, Wang Y, Feng Y, Teo WS, Wu T and Chen H, 2010. Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. ACS Nano. 4: 3087-3094. doi:10.1021/nn100269v
    10. Krajczewski J, Joubert V and Kudelski A, 2014. Light-induced transformation of citrate stabilized silver nanoparticles: photochemical method of increase of SERS activity of silver colloids. Colloids Surf. A: Physicochem. Eng. Asp. 456: 41-48. doi:10.1016/j.colsurfa.2014.05.005
    11. Puente C, Pineda Aguilar N, Gómez I and López I, 2023. Morphology effect of photoconverted silver nanoparticles on the performance of surface-enhanced Raman spectroscopy substrates. ACS Omega. 8: 12630-12635. doi:10.1021/acsomega.2c05958
    12. Le Ru E C and Etchegoin P G. Principles of Surface-Enhanced Raman Spectroscopy. Elsevier: Oxford, 2008. doi:10.1016/B978-0-444-52779-0.00005-2
    13. Zannotti M, Rossi A and Giovannetti R, 2020. SERS activity of silver nanosphere, triangular nanoplates, hexagonal nanoplates and quasi-spherical nanoparticles: effect of shape and morphology. Coatings. 10: 288. doi:10.3390/coatings10030288
    14. Estrada-Mendoza T A, Willett D and Chumanov G, 2020. Light absorption and scattering by silver/silver sulfide hybrid nanoparticles. J. Phys. Chem. C. 124: 27024-27031. doi:10.1021/acs.jpcc.0c08247
    15. Pastoriza-Santos I and Liz-Marzán L M, 2008. Colloidal silver nanoplates. State of the art and future challenges. J. Mater. Chem. 18: 1724-1737. doi:10.1039/b716538b
    16. Jana D, Mandal A and De G, 2012. High Raman enhancing shape-tunable ag nanoplates in alumina: a reliable and efficient SERS technique. ACS Appl. Mater Interfaces. 4: 3330-3334. doi:10.1021/am300781h
    17. Tiwari V S, Oleg T, Darbha G K, Hardy W, Singh J P and Ray P C, 2007. Non-resonance SERS effects of silver colloids with different shapes. Chem. Phys. Lett. 446: 77-82. doi:10.1016/j.cplett.2007.07.106
    18. Iravani S, Korbekandi H, Mirmohammadi S V and Zolfaghari B, 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9: 385-406.
    19. Tanimoto H, Ohmura S and Maeda Y, 2012. Size-selective formation of hexagonal silver nanoprisms in silver citrate solution by monochromatic-visible-light irradiation. J. Phys. Chem. C. 116: 15819-15825. doi:10.1021/jp304504c
    20. Tang B, Sun L, Li J, Zhang M and Wang X, 2015. Sunlight-driven synthesis of anisotropic silver nanoparticles. J. Chem. Eng. 260: 99-106. doi:10.1016/j.cej.2014.08.044
    21. Stamplecoskie K G and Scaiano J C, 2010. Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles. J. Amer. Chem. Soc. 132: 1825-1827. doi:10.1021/ja910010b
    22. Saade J and Araújo C B, 2014. Synthesis of silver nanoprisms: a photochemical approach using light emission diodes. Mater. Chem. Phys. 148: 1184-1193. doi:10.1016/j.matchemphys.2014.09.045
    23. Nhung N T H, Dat N T, Thi C M and Viet P V, 2020. Fast and simple synthesis of triangular silver nanoparticles under the assistance of light. Colloids Surf. A: Physicochem. Eng. Asp. 594 (2020): 124659. doi:10.1016/j.colsurfa.2020.124659
    24. Xue B, Wang D, Zuo J, Kong X, Zhang Y, Liu X, Tu L, Chang Y, Li C, Wu F, Zeng Q, Zhao H, Zhao H and Zhang H, 2015. Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity. Nanoscale. 7: 8048-8057. doi:10.1039/C4NR06901C
    25. Millstone J E, Hurst S J, Métraux G S, Cutler J I and Mirkin C A, 2009. Colloidal gold and silver triangular nanoprisms. Small. 5: 646-6464. doi:10.1002/smll.200801480
    26. Haitao W, Xiaoqiang C, Weiming G, Xianliang Z, Hetong Z, Tianyu X and Weitao Z, 2016. Synthesis of silver nanoprisms and nanodecahedra for plasmonic modulating surface-enhanced Raman scattering. J. Nanosci. Nanotechnol. 16: 6829-6836. doi:10.1166/jnn.2016.11336
    27. Wang H, Cui X, Guan W, Zheng X, Zhao H, Wang Z, Wang Q, Xue T, Liu C, Singh DJ and Zheng W, 2014. Kinetic effects in the photomediated synthesis of silver nanodecahedra and nanoprisms: combined effect of wavelength and temperature. Nanoscale. 6: 7295-7302. doi:10.1039/C4NR01442A
    28. Swarnavalli G C J, Joseph V, Kannappan V and Roopsingh D, 2011. A simple approach to the synthesis of hexagonal-shaped silver nanoplates. J. Nanomater. 2011: 1-5. doi:10.1155/2011/825637
    29. Xue C, Métraux G S, Millstone J E and Mirkin C A, 2008. Mechanistic study of photomediated triangular silver nanoprism growth. J. Amer. Chem. Soc. 130: 8337-8344. doi:10.1021/ja8005258
    30. Stamplecoskie K G, Scaiano J C, Tiwari V S and Anis H, 2011. Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J. Phys. Chem. C. 115: 1403-1409. doi:10.1021/jp106666t
    31. Brioude A and Pileni M P, 2005. Silver nanodisks:  optical properties study using the discrete dipole approximation method. J. Phys. Chem. B. 109: 23371-23377. doi:10.1021/jp055265k
    32. Bartlett T R, Sokolov S V, Plowman B J, Young N P and Compton R G, 2016. Tracking of photochemical Ostwald ripening of nanoparticles through voltammetric atom counting. Nanoscale. 8: 16075-16530. doi:10.1039/C6NR05740C
    33. Kelly K L, Coronado E, Zhao L L and Schatz G C, 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107: 668-677. doi:10.1021/jp026731y
    34. Watanabe H, Hayazawa N, Inouye Y and Kawata S, 2005. DFT vibrational calculations of rhodamine 6G adsorbed on silver: analysis of tip-enhanced Raman spectroscopy. J. Phys. Chem. B. 109: 5012-5020. doi:10.1021/jp045771u
    35. Hildebrandt P and Stockburger M, 1984. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 88: 5935-5944. doi:10.1021/j150668a038
    36. Zhong F, Wu Z, Guo J and Jia D, 2018. Porous silicon photonic crystals coated with Ag nanoparticles as efficient substrates for detecting trace explosives using SERS. Nanomater. 8: 872. doi:10.3390/nano8110872
    37. He X N, Gao Y, Mahjouri-Samani M, Black P N, Allen J, Mitchell M, Xiong W, Zhou Y S, Jiang L and Lu Y F, 2012. Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnol. 23: 205702. doi:10.1088/0957-4484/23/20/205702

    Ми синтезували та розділили трикутні срібні нанопластини (ТСНП) із суміші колоїдних наночастинок срібла різних форм і розмірів із метою виготовлення підкладок для поверхнево-підсиленого комбінаційного розсіювання (ППКР). ТСНП успішно синтезовано за допомогою фото¬хімічного процесу за участю нанозерен Ag. Це підтверджено методом ультрафіолетової та видимої спектроскопії, а також даними трансмісійної електронної мікроскопії. Методи розділення на основі центрифугування використано для ізоляції ТСНП і мінімізації інших морфологій наночастинок, що забезпечило високу ефективність ППКР. Відокремлені ТСНП виявляють дуже високу чутливість, із межею виявлення, що складає 10–12 М для випадку молекул родаміну 6G. Лінійний зв’язок між концентрацією родаміну 6G та інтенсивністю раманівського піку демонструє значний потенціал нашої методики ППКР. Отже, наше дослідження поєднало успішний синтез і розділення ТСНП із демонстрацією їхньої ефективної ППКР. Останнє пропонує нові можливості для ультрачутливого виявлення слідів речовин. Ці результати сприятимуть розробці надійних вимірювань ППКР і прогресові в галузі методів зондування на основі наноматеріалів

    Ключові слова: трикутні срібні нанопластини, розділення на основі центрифугування, поверхнево-підсилене комбінаційне розсіювання, фотохімічний синтез


© Ukrainian Journal of Physical Optics ©