Ukrainian Journal of Physical Optics
2023 Volume 24, Issue 3
Tuning bandgap and optical properties of Pb-free perovskites RbGeX3 (X = Cl, Br and I) under pressure: a DFT study
1Bewar M. Ahmad, 2Nawzad A. Abdulkareem and 3Sarkawt A. Sami
1Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq 2Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq 3Department of Physics, College of Science, University of Duhok, Kurdistan Region,Iraq
Ukr. J. Phys. Opt.
Vol. 24
,
Issue 3 , pp. 200 - 221 (2023).
doi:10.3116/16091833/24/3/200/2023
ABSTRACT
Keywords:
electronic band structure, bandgap energy, density of states, optical properties, hydrostatic pressure, density functional theory, generalized gradient approximation
UDC:
535.3
- Green M A, Ho-Baillie A and Snaith H J, 2014. The emergence of perovskite solar cells. Nature Photon. 8: 506-514. doi:10.1038/nphoton.2014.134
- Ašmontas S, Čerškus A, Gradauskas J, Grigucevičienė A, Juškėnas R, Leinartas K, Lučun A, Petrauskas K, Selskis A, Sužiedėlis A and Širmulis E, 2022. Impact of cesium concentration on optoelectronic properties of metal halide perovskites. Mater. 15: 1936. doi:10.3390/ma15051936
- Liang C, Gu H, Xia J, Mei S, Pang P, Zhang N, Guo J, Guo R, Shen Y, Yang S, Wei Z, Shao G and Xing G, 2022. Recent progress in perovskite-based reversible photon-electricity conversion devices. Adv. Func. Mater. 32: 2108926. doi:10.1002/adfm.202108926
- Kojima A, Teshima K, Shirai Y and Miyasaka T, 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Amer. Chem. Soc. 131: 6050-6051. doi:10.1021/ja809598r
- Sahli F, Werner J, Kamino A B, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B and Ballif C, 2018. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Mater. 17: 820-826. doi:10.1038/s41563-018-0115-4
- Johnsson M and Lemmens P. Crystallography and Chemistry of Perovskites. arXiv Preprint cond-mat/0506606, 2005.
- Demic S, Ozcivan A N, Can M, Ozbek C and Karakaya M, Recent progresses in perovskite solar cells. In Nanostructured Solar Cells Ed. by N.Das, InTech: Rijeka, 277-304 (2017). doi:10.5772/65019
- Li Z, Yang M, Park J-S, Wei S-H, Berry J J and Zhu K, 2016. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28: 284-292. doi:10.1021/acs.chemmater.5b04107
- Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T and Snaith H J, 2016. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6: 1502458. doi:10.1002/aenm.201502458
- Zhang W, Eperon G E and Snaith H J, 2016. Metal halide perovskites for energy applications. Nature Energy. 1: 1-8. doi:10.1038/nenergy.2016.48
- Herz L M, 2017. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2: 1539-1548. doi:10.1021/acsenergylett.7b00276
- Ji Y, Xu W, Rasskazov L L, Liu H, Hu J, Liu M, Zhou D, Bai X, Agren H and Song H, 2022. Perovskite photonic crystal photoelectric devices. Appl. Phys. Rev. 9: 041319. doi:10.1063/5.0106118
- Wu T and Gao P, 2018. Development of perovskite-type materials for thermoelectric application. Mater. 11: 999. doi:10.3390/ma11060999
- Wei Z and Xing J, 2019. The rise of perovskite light-emitting diodes. J. Phys. Chem. Lett. 10: 3035-3042. doi:10.1021/acs.jpclett.9b00277
- Liu A, Zhu H, Bai S, Reo Y, Zou T, Kim M-G and Noh Y-Y, 2022. High-performance inorganic metal halide perovskite transistors. Nature Electron. 5: 78-83. doi:10.1038/s41928-022-00712-2
- Li Y, Shi Z-F, Li X-J and Shan C-X, 2019. Photodetectors based on inorganic halide perovskites: Materials and devices. Chin. Phys. B. 28: 017803. doi:10.1088/1674-1056/28/1/017803
- Jonathan L, Diguna L J, Samy O, Muqoyyanah M, Bakar A S, Birowosuto M D and El Moutaouakil A, 2022. Hybrid organic-inorganic perovskite halide materials for photovoltaics towards their commercialization. Polymers. 14: 1059. doi:10.3390/polym14051059
- Ma L, Guo D, Li M, Wang C, Zhou Z, Zhao X, Zhang F, Ao Z and Nie Z, 2019. Temperature-dependent thermal decomposition pathway of organic-inorganic halide perovskite materials. Chem. Mater. 31: 8515-8522. doi:10.1021/acs.chemmater.9b03190
- Juarez-Perez E J, Hawash Z, Raga S R, Ono L K and Qi Y, 2016. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 9: 3406-3410. doi:10.1039/C6EE02016J
- Su P, Liu Y, Zhang J, Chen C, Yang B, Zhang C and Zhao X, 2020. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells. J. Phys. Chem. Lett. 11: 2812-2817. doi:10.1021/acs.jpclett.0c00503
- Babayigit A, Thanh D D, Ethirajan A, Manca J, Muller M, Boyen H-G and Conings B, 2016. Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6: 18721. doi:10.1038/srep18721
- Eckhardt K, Bon V, Getzschmann J, Grothe J, Wisser F M and Kaskel S, 2016. Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics. Chem. Commun. 52: 3058-3060. doi:10.1039/C5CC10455F
- Kopacic I, Friesenbichler B, Hoefler F S, Kunert B, Plank H, Rath T and Trimmel G, 2018. Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl. Energy Mater. 1: 343-347. doi:10.1021/acsaem.8b00007
- Lye Y-E, Chan K-Y and Ng Z-N, 2023. A review on the progress, challenges, and performances of tin-based perovskite solar cells. Nanomater. 13: 585. doi:10.3390/nano13030585
- Boopathi K M, Karuppuswamy P, Singh A, Hanmandlu C, Lin L, Abbas S A, Chang C C, Wang P C, Li G and Chu C W, 2017. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. J. Mater. Chem. A. 5: 20843-20850. doi:10.1039/C7TA06679A
- Cao J, Tai Q, You P, Tang G, Wang T, Wang N and Yan F, 2019. Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A. 7: 26580-26585. doi:10.1039/C9TA08679J
- Thakur S, Borah S M and Adhikary N C, 2018. A DFT study of structural, electronic and optical properties of heteroatom doped monolayer graphene. Optik. 168: 228-236. doi:10.1016/j.ijleo.2018.04.099
- Yu Z-L, Ma Q-R, Liu B, Zhao Y-Q, Wang L-Z, Zhou H and Cai M-Q, 2017. Oriented tuning the photovoltaic properties of γ-RbGeX3 by strain-induced electron effective mass mutation. J. Phys. D: Appl. Phys. 50: 465101. doi:10.1088/1361-6463/aa8bea
- Erdinc F, Dogan E K and Akkus H, 2019. Investigation of structural, electronic, optic and elastic properties of perovskite RbGeCl3 crystal: a first principles study. Gazi Univ. J. Sci. 32: 1008-1019. doi:10.35378/gujs.448378
- Jong U-G, Yu C-J, Kye Y-H, Choe Y-G, Hao W and Li S, 2019. First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites. Inorg. Chem. 58: 4134-4140. doi:10.1021/acs.inorgchem.8b03095
- Houari M, Bouadjemi B, Matougui M, Haid S, Lantri T, Aziz Z, Bentata S and Bouhafs B, 2019. Optoelectronic properties of germanium iodide perovskites AGeI3 (A= K, Rb and Cs): first principles investigations. Opt. Quant. Electron. 51: 1-14. doi:10.1007/s11082-019-1949-y
- Huang L-Y and Lambrecht W R, 2016. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si. Phys. Rev. B. 93: 195211. doi:10.1103/PhysRevB.93.195211
- Liu G, Kong L, Gong G, Yang W, Mao H-K, Hu Q, Liu Z, Schaller D R, Zhang D and Xu T, 2017. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability. Adv. Funct. Mater. 27: 1604208. doi:10.1002/adfm.201604208
- Kong L, Liu G, Gong J and Mao H-K, 2016. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. Proc. Nat. Acad. Sci. 113: 8910-8915. doi:10.1073/pnas.1609030113
- Postorino P and Malavasi L, 2017. Pressure-induced effects in organic-inorganic hybrid perovskites. J. Phys. Chem. Lett. 8: 2613-2622. doi:10.1021/acs.jpclett.7b00347
- Szafrański M and Katrusiak A, 2017. Photovoltaic hybrid perovskites under pressure. J. Phys. Chem. Lett. 8: 2496-2506. doi:10.1021/acs.jpclett.7b00520
- Wang P, Guan J, Galeschuk D T K, Yao Y, He C F, Jiang S, Zhang S, Liu Y, Jin M, Jin C and Song Y, 2017. Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett. 8: 2119-2125. doi:10.1021/acs.jpclett.7b00665
- Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith S J, Yang W, Zhao Y, Xu H, Kanatzidis G M and Jia Q, 2016. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28: 8663-8668. doi:10.1002/adma.201600771
- Mitro S K, Saiduzzaman M, Asif I T and Hossain M K, 2022. Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX3 (X= Cl, Br) under pressure. J. Mater. Sci.: Mater. Electron. 33: 13860-13875. doi:10.1007/s10854-022-08318-2
- Islam J and Hossain A A, 2020. Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure. Sci. Rep. 10: 14391. doi:10.1038/s41598-020-71223-3
- Ali M A, Ullah R, Murad S, Dar S A, Khan A, Murtaza G and Laref A, 2020. Insight into pressure tunable structural, electronic and optical properties of via DFT calculations. Eur. Phys. J. Plus. 135: 309. doi:10.1140/epjp/s13360-020-00325-8
- Gonze X, Jollet F, Araujo F A, Adams D, Amadon B, Applencourt T, Audouze C, Beuken J-M, Bieder J, Bokhanchuk A, Bousque E T, Bruneval F, Caliste D, Cot M E, Dahm F, Pieve F D, Delaveau M, Gennaro M D, Dorado B, Espejo C, Geneste G, Genovese L, Gerossier A, Giantomassi M, Gillet Y, Hamann D R, He L, Jomard G, Janssen J L, Roux S L, Levitt A, Lherbier A, Liu F, Lukacevi I C, Martin A, Martins C, Oliveira M J T, Ponce S, Pouillon Y, Rangel T, Rignanese G-M, Romero A H, Rousseau B, Rubel O, Shukri A A, Stankovski M, Torrent M, Van Setten M J, Van Troeye B, Verstraete M J, Waroquiers D, Wiktor J, Xu B, Zhou A and Zwanziger J W, 2016. Recent developments in the ABINIT software package. Comp. Phys. Commun. 205: 106-131. doi:10.1016/j.cpc.2016.04.003
- Perdew J P, Burke K and Ernzerhof M, 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865-3868. doi:10.1103/PhysRevLett.77.3865
- Goedecker S, Teter M and Hutter J, 1996. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B. 54: 1703-1710. doi:10.1103/PhysRevB.54.1703
- Krack M, 2005. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Accounts. 114: 145-152. doi:10.1007/s00214-005-0655-y
- Monkhorst H J and Pack J D, 1976. Special points for Brillouin-zone integrations. Phys. Rev. B. 13: 5188-5192. doi:10.1103/PhysRevB.13.5188
- Sharma S and Ambrosch-Draxl C, 2004. Second-harmonic optical response from first principles. Physica Scripta. 2004: 128-134. doi:10.1238/Physica.Topical.109a00128
- Lucarini V, Saarinen J J, Peiponen K-E and Vartiainen E M. Kramers-Kronig Relations in Optical Materials Research. Vol. 110. Springer Science & Business Media, 2005.
- Kornilovich A and Loseva N, Computer simulation of physical processes in Josephson junction. In: 4th International Conference on Actual Problems of Electronic Instrument Engineering Proceedings. APEIE-98 (Cat. No. 98EX179). 1998. IEEE. doi:10.1109/APEIE.1998.769010
- Birch F, 1947. Finite elastic strain of cubic crystals. Phys. Rev. 71: 809-824. doi:10.1103/PhysRev.71.809
- Houari M, Bouadjemi B, Haid S, Matougui M, Lantri T, Aziz Z, Bentata S and Bouhafs B, 2020. Semiconductor behavior of halide perovskites AGeX3 (A= K, Rb and Cs; X= F, Cl and Br): first-principles calculations. Ind. J. Phys. 94: 455-467. doi:10.1007/s12648-019-01480-0
- Parrey K A, Farooq T, Khandy S A, Farooq U and Gupta A, 2019. First principle studies on structure, magneto-electronic and elastic properties of photovoltaic semiconductor halide (RbGeI3) and ferromagnetic half metal oxide (RbDyO3). Comp. Condens. Matter. 19: e00381-e00388. doi:10.1016/j.cocom.2019.e00381
- Zhu Y Z, Chen G D, Ye H, Walsh A, Moon C Y and Wei Su-H, 2008. Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. Phys. Rev. B. 77: 245209. doi:10.1103/PhysRevB.77.245209
- Li Y-H, Walsh A, Chen S, Yin W-J, Yang J-H, Li J, Da Silva J L F, Gong X G and Wei S-H, 2009. Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors. Appl. Phys. Lett. 94: 212109. doi:10.1063/1.3143626
- Abdulla H T and Sami S A, 2023. First-principles study of structural, electronic, elastic and optical properties of alkali lead iodides MPbI3 (M= Li, Na, K). Ukr. J. Phys. Opt. 24: 1-21. doi:10.3116/16091833/24/1/1/2023
-
Досліджено структурні, електронні та оптичні властивості неорганічних безсвинцевих галоїдних перовскитів RbGeX3 (X = Cl, Br та I) під гідростатичним тиском, які можуть посприяти розробці нових оптоелектронних пристроїв і технологій створення сонячних елементів. Застосовано першопринципні розрахунки на основі загального градієнтного наближення в рамках теорії функціоналу густини. Показано, що ширина забороненої зони вивчених перовскитів зменшується зі зростанням тиску. За даного тиску заборонена зона звужується при переході від атома галогену Cl до I. Визначено щільність електронних станів і показано, що рівні енергії поблизу рівня Фермі суттєво змінюються під тиском. Оптичні властивості розраховано за допомогою теорії збурень функціоналу густини та співвідношення Крамерса–Кроніга. Для різних тисків розраховано такі оптичні параметри як дійсна та уявна частини діелектричної проникності, показник заломлення та коефіцієнт поглинання.
Ключові слова: електронна зонна структура, оптичні властивості, гідростатичний тиск, ширина забороненої зони, густина станів, теорія функціоналу густини, загальне градієнтне наближення
© Ukrainian Journal of Physical Optics ©