Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 3


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Tuning bandgap and optical properties of Pb-free perovskites RbGeX3 (X = Cl, Br and I) under pressure: a DFT study

1Bewar M. Ahmad, 2Nawzad A. Abdulkareem and 3Sarkawt A. Sami

1Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
2Department of Physics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq
3Department of Physics, College of Science, University of Duhok, Kurdistan Region,Iraq

ABSTRACT

We study structural, electronic and optical properties of inorganic lead-free halide perovskites RbGeX3 (X = Cl, Br and I) under hydrostatic pressure, which could facilitate development of new optoelectronic and solar-cell technologies. ab initio first-principles calculations are employed based on the generalized gradient approximation within the framework of density functional theory. We demonstrate that the bandgap of our perovskites decreases with increasing pressure. At a given pressure, the bandgap becomes narrower when the halogen atom is changed from Cl to I. We also examine the density of states and demonstrate that the energy levels near the Fermi level change significantly under pressure. The optical properties are calculated using the density functional perturbation theory and the Kramers–Kronig relation. The optical parameters such as the real and imaginary parts of the dielectric function, the refractive index and the absorption coefficient are calculated under different pressures.

Keywords: electronic band structure, bandgap energy, density of states, optical properties, hydrostatic pressure, density functional theory, generalized gradient approximation

UDC: 535.3

    1. Green M A, Ho-Baillie A and Snaith H J, 2014. The emergence of perovskite solar cells. Nature Photon. 8: 506-514. doi:10.1038/nphoton.2014.134
    2. Ašmontas S, Čerškus A, Gradauskas J, Grigucevičienė A, Juškėnas R, Leinartas K, Lučun A, Petrauskas K, Selskis A, Sužiedėlis A and Širmulis E, 2022. Impact of cesium concentration on optoelectronic properties of metal halide perovskites. Mater. 15: 1936. doi:10.3390/ma15051936
    3. Liang C, Gu H, Xia J, Mei S, Pang P, Zhang N, Guo J, Guo R, Shen Y, Yang S, Wei Z, Shao G and Xing G, 2022. Recent progress in perovskite-based reversible photon-electricity conversion devices. Adv. Func. Mater. 32: 2108926. doi:10.1002/adfm.202108926
    4. Kojima A, Teshima K, Shirai Y and Miyasaka T, 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Amer. Chem. Soc. 131: 6050-6051. doi:10.1021/ja809598r
    5. Sahli F, Werner J, Kamino A B, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B and Ballif C, 2018. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Mater. 17: 820-826. doi:10.1038/s41563-018-0115-4
    6. Johnsson M and Lemmens P. Crystallography and Chemistry of Perovskites. arXiv Preprint cond-mat/0506606, 2005.
    7. Demic S, Ozcivan A N, Can M, Ozbek C and Karakaya M, Recent progresses in perovskite solar cells. In Nanostructured Solar Cells Ed. by N.Das, InTech: Rijeka, 277-304 (2017). doi:10.5772/65019
    8. Li Z, Yang M, Park J-S, Wei S-H, Berry J J and Zhu K, 2016. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28: 284-292. doi:10.1021/acs.chemmater.5b04107
    9. Sutton R J, Eperon G E, Miranda L, Parrott E S, Kamino B A, Patel J B, Hörantner M T, Johnston M B, Haghighirad A A, Moore D T and Snaith H J, 2016. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 6: 1502458. doi:10.1002/aenm.201502458
    10. Zhang W, Eperon G E and Snaith H J, 2016. Metal halide perovskites for energy applications. Nature Energy. 1: 1-8. doi:10.1038/nenergy.2016.48
    11. Herz L M, 2017. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2: 1539-1548. doi:10.1021/acsenergylett.7b00276
    12. Ji Y, Xu W, Rasskazov L L, Liu H, Hu J, Liu M, Zhou D, Bai X, Agren H and Song H, 2022. Perovskite photonic crystal photoelectric devices. Appl. Phys. Rev. 9: 041319. doi:10.1063/5.0106118
    13. Wu T and Gao P, 2018. Development of perovskite-type materials for thermoelectric application. Mater. 11: 999. doi:10.3390/ma11060999
    14. Wei Z and Xing J, 2019. The rise of perovskite light-emitting diodes. J. Phys. Chem. Lett. 10: 3035-3042. doi:10.1021/acs.jpclett.9b00277
    15. Liu A, Zhu H, Bai S, Reo Y, Zou T, Kim M-G and Noh Y-Y, 2022. High-performance inorganic metal halide perovskite transistors. Nature Electron. 5: 78-83. doi:10.1038/s41928-022-00712-2
    16. Li Y, Shi Z-F, Li X-J and Shan C-X, 2019. Photodetectors based on inorganic halide perovskites: Materials and devices. Chin. Phys. B. 28: 017803. doi:10.1088/1674-1056/28/1/017803
    17. Jonathan L, Diguna L J, Samy O, Muqoyyanah M, Bakar A S, Birowosuto M D and El Moutaouakil A, 2022. Hybrid organic-inorganic perovskite halide materials for photovoltaics towards their commercialization. Polymers. 14: 1059. doi:10.3390/polym14051059
    18. Ma L, Guo D, Li M, Wang C, Zhou Z, Zhao X, Zhang F, Ao Z and Nie Z, 2019. Temperature-dependent thermal decomposition pathway of organic-inorganic halide perovskite materials. Chem. Mater. 31: 8515-8522. doi:10.1021/acs.chemmater.9b03190
    19. Juarez-Perez E J, Hawash Z, Raga S R, Ono L K and Qi Y, 2016. Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 9: 3406-3410. doi:10.1039/C6EE02016J
    20. Su P, Liu Y, Zhang J, Chen C, Yang B, Zhang C and Zhao X, 2020. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells. J. Phys. Chem. Lett. 11: 2812-2817. doi:10.1021/acs.jpclett.0c00503
    21. Babayigit A, Thanh D D, Ethirajan A, Manca J, Muller M, Boyen H-G and Conings B, 2016. Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep. 6: 18721. doi:10.1038/srep18721
    22. Eckhardt K, Bon V, Getzschmann J, Grothe J, Wisser F M and Kaskel S, 2016. Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics. Chem. Commun. 52: 3058-3060. doi:10.1039/C5CC10455F
    23. Kopacic I, Friesenbichler B, Hoefler F S, Kunert B, Plank H, Rath T and Trimmel G, 2018. Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl. Energy Mater. 1: 343-347. doi:10.1021/acsaem.8b00007
    24. Lye Y-E, Chan K-Y and Ng Z-N, 2023. A review on the progress, challenges, and performances of tin-based perovskite solar cells. Nanomater. 13: 585. doi:10.3390/nano13030585
    25. Boopathi K M, Karuppuswamy P, Singh A, Hanmandlu C, Lin L, Abbas S A, Chang C C, Wang P C, Li G and Chu C W, 2017. Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. J. Mater. Chem. A. 5: 20843-20850. doi:10.1039/C7TA06679A
    26. Cao J, Tai Q, You P, Tang G, Wang T, Wang N and Yan F, 2019. Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. J. Mater. Chem. A. 7: 26580-26585. doi:10.1039/C9TA08679J
    27. Thakur S, Borah S M and Adhikary N C, 2018. A DFT study of structural, electronic and optical properties of heteroatom doped monolayer graphene. Optik. 168: 228-236. doi:10.1016/j.ijleo.2018.04.099
    28. Yu Z-L, Ma Q-R, Liu B, Zhao Y-Q, Wang L-Z, Zhou H and Cai M-Q, 2017. Oriented tuning the photovoltaic properties of γ-RbGeX3 by strain-induced electron effective mass mutation. J. Phys. D: Appl. Phys. 50: 465101. doi:10.1088/1361-6463/aa8bea
    29. Erdinc F, Dogan E K and Akkus H, 2019. Investigation of structural, electronic, optic and elastic properties of perovskite RbGeCl3 crystal: a first principles study. Gazi Univ. J. Sci. 32: 1008-1019. doi:10.35378/gujs.448378
    30. Jong U-G, Yu C-J, Kye Y-H, Choe Y-G, Hao W and Li S, 2019. First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites. Inorg. Chem. 58: 4134-4140. doi:10.1021/acs.inorgchem.8b03095
    31. Houari M, Bouadjemi B, Matougui M, Haid S, Lantri T, Aziz Z, Bentata S and Bouhafs B, 2019. Optoelectronic properties of germanium iodide perovskites AGeI3 (A= K, Rb and Cs): first principles investigations. Opt. Quant. Electron. 51: 1-14. doi:10.1007/s11082-019-1949-y
    32. Huang L-Y and Lambrecht W R, 2016. Electronic band structure trends of perovskite halides: beyond Pb and Sn to Ge and Si. Phys. Rev. B. 93: 195211. doi:10.1103/PhysRevB.93.195211
    33. Liu G, Kong L, Gong G, Yang W, Mao H-K, Hu Q, Liu Z, Schaller D R, Zhang D and Xu T, 2017. Pressure-induced bandgap optimization in lead-based perovskites with prolonged carrier lifetime and ambient retainability. Adv. Funct. Mater. 27: 1604208. doi:10.1002/adfm.201604208
    34. Kong L, Liu G, Gong J and Mao H-K, 2016. Simultaneous band-gap narrowing and carrier-lifetime prolongation of organic-inorganic trihalide perovskites. Proc. Nat. Acad. Sci. 113: 8910-8915. doi:10.1073/pnas.1609030113
    35. Postorino P and Malavasi L, 2017. Pressure-induced effects in organic-inorganic hybrid perovskites. J. Phys. Chem. Lett. 8: 2613-2622. doi:10.1021/acs.jpclett.7b00347
    36. Szafrański M and Katrusiak A, 2017. Photovoltaic hybrid perovskites under pressure. J. Phys. Chem. Lett. 8: 2496-2506. doi:10.1021/acs.jpclett.7b00520
    37. Wang P, Guan J, Galeschuk D T K, Yao Y, He C F, Jiang S, Zhang S, Liu Y, Jin M, Jin C and Song Y, 2017. Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett. 8: 2119-2125. doi:10.1021/acs.jpclett.7b00665
    38. Lü X, Wang Y, Stoumpos C C, Hu Q, Guo X, Chen H, Yang L, Smith S J, Yang W, Zhao Y, Xu H, Kanatzidis G M and Jia Q, 2016. Enhanced structural stability and photo responsiveness of CH3NH3SnI3 perovskite via pressure-induced amorphization and recrystallization. Adv. Mater. 28: 8663-8668. doi:10.1002/adma.201600771
    39. Mitro S K, Saiduzzaman M, Asif I T and Hossain M K, 2022. Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX3 (X= Cl, Br) under pressure. J. Mater. Sci.: Mater. Electron. 33: 13860-13875. doi:10.1007/s10854-022-08318-2
    40. Islam J and Hossain A A, 2020. Semiconducting to metallic transition with outstanding optoelectronic properties of CsSnCl3 perovskite under pressure. Sci. Rep. 10: 14391. doi:10.1038/s41598-020-71223-3
    41. Ali M A, Ullah R, Murad S, Dar S A, Khan A, Murtaza G and Laref A, 2020. Insight into pressure tunable structural, electronic and optical properties of via DFT calculations. Eur. Phys. J. Plus. 135: 309. doi:10.1140/epjp/s13360-020-00325-8
    42. Gonze X, Jollet F, Araujo F A, Adams D, Amadon B, Applencourt T, Audouze C, Beuken J-M, Bieder J, Bokhanchuk A, Bousque E T, Bruneval F, Caliste D, Cot M E, Dahm F, Pieve F D, Delaveau M, Gennaro M D, Dorado B, Espejo C, Geneste G, Genovese L, Gerossier A, Giantomassi M, Gillet Y, Hamann D R, He L, Jomard G, Janssen J L, Roux S L, Levitt A, Lherbier A, Liu F, Lukacevi I C, Martin A, Martins C, Oliveira M J T, Ponce S, Pouillon Y, Rangel T, Rignanese G-M, Romero A H, Rousseau B, Rubel O, Shukri A A, Stankovski M, Torrent M, Van Setten M J, Van Troeye B, Verstraete M J, Waroquiers D, Wiktor J, Xu B, Zhou A and Zwanziger J W, 2016. Recent developments in the ABINIT software package. Comp. Phys. Commun. 205: 106-131. doi:10.1016/j.cpc.2016.04.003
    43. Perdew J P, Burke K and Ernzerhof M, 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77: 3865-3868. doi:10.1103/PhysRevLett.77.3865
    44. Goedecker S, Teter M and Hutter J, 1996. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B. 54: 1703-1710. doi:10.1103/PhysRevB.54.1703
    45. Krack M, 2005. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Accounts. 114: 145-152. doi:10.1007/s00214-005-0655-y
    46. Monkhorst H J and Pack J D, 1976. Special points for Brillouin-zone integrations. Phys. Rev. B. 13: 5188-5192. doi:10.1103/PhysRevB.13.5188
    47. Sharma S and Ambrosch-Draxl C, 2004. Second-harmonic optical response from first principles. Physica Scripta. 2004: 128-134. doi:10.1238/Physica.Topical.109a00128
    48. Lucarini V, Saarinen J J, Peiponen K-E and Vartiainen E M. Kramers-Kronig Relations in Optical Materials Research. Vol. 110. Springer Science & Business Media, 2005.
    49. Kornilovich A and Loseva N, Computer simulation of physical processes in Josephson junction. In: 4th International Conference on Actual Problems of Electronic Instrument Engineering Proceedings. APEIE-98 (Cat. No. 98EX179). 1998. IEEE. doi:10.1109/APEIE.1998.769010
    50. Birch F, 1947. Finite elastic strain of cubic crystals. Phys. Rev. 71: 809-824. doi:10.1103/PhysRev.71.809
    51. Houari M, Bouadjemi B, Haid S, Matougui M, Lantri T, Aziz Z, Bentata S and Bouhafs B, 2020. Semiconductor behavior of halide perovskites AGeX3 (A= K, Rb and Cs; X= F, Cl and Br): first-principles calculations. Ind. J. Phys. 94: 455-467. doi:10.1007/s12648-019-01480-0
    52. Parrey K A, Farooq T, Khandy S A, Farooq U and Gupta A, 2019. First principle studies on structure, magneto-electronic and elastic properties of photovoltaic semiconductor halide (RbGeI3) and ferromagnetic half metal oxide (RbDyO3). Comp. Condens. Matter. 19: e00381-e00388. doi:10.1016/j.cocom.2019.e00381
    53. Zhu Y Z, Chen G D, Ye H, Walsh A, Moon C Y and Wei Su-H, 2008. Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys. Phys. Rev. B. 77: 245209. doi:10.1103/PhysRevB.77.245209
    54. Li Y-H, Walsh A, Chen S, Yin W-J, Yang J-H, Li J, Da Silva J L F, Gong X G and Wei S-H, 2009. Revised ab initio natural band offsets of all group IV, II-VI, and III-V semiconductors. Appl. Phys. Lett. 94: 212109. doi:10.1063/1.3143626
    55. Abdulla H T and Sami S A, 2023. First-principles study of structural, electronic, elastic and optical properties of alkali lead iodides MPbI3 (M= Li, Na, K). Ukr. J. Phys. Opt. 24: 1-21. doi:10.3116/16091833/24/1/1/2023

    Досліджено структурні, електронні та оптичні властивості неорганічних безсвинцевих галоїдних перовскитів RbGeX3 (X = Cl, Br та I) під гідростатичним тиском, які можуть посприяти розробці нових оптоелектронних пристроїв і технологій створення сонячних елементів. Застосовано першопринципні розрахунки на основі загального градієнтного наближення в рамках теорії функціоналу густини. Показано, що ширина забороненої зони вивчених перовскитів зменшується зі зростанням тиску. За даного тиску заборонена зона звужується при переході від атома галогену Cl до I. Визначено щільність електронних станів і показано, що рівні енергії поблизу рівня Фермі суттєво змінюються під тиском. Оптичні властивості розраховано за допомогою теорії збурень функціоналу густини та співвідношення Крамерса–Кроніга. Для різних тисків розраховано такі оптичні параметри як дійсна та уявна частини діелектричної проникності, показник заломлення та коефіцієнт поглинання.

    Ключові слова: електронна зонна структура, оптичні властивості, гідростатичний тиск, ширина забороненої зони, густина станів, теорія функціоналу густини, загальне градієнтне наближення


© Ukrainian Journal of Physical Optics ©