Ukrainian Journal of Physical Optics
2023 Volume 24, Issue 1
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
Absorption of one-dimensional dielectric-metal photonic-crystal absorbers for terahertz range
Tarek I Alanazi
Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia, tarek.alanazi@nbu.edu.sa
Ukr. J. Phys. Opt.
Vol. 24
,
Issue 1 , pp. 83 - 94 (2023).
doi:10.3116/16091833/24/1/83/2023
ABSTRACT
We study the spectral response of a one-dimensional dielectric–metal photonic-crystal absorber. The reflection and absorption spectra in the frequency range 0.1–10 THz are obtained by applying a transfer-matrix method. The influence of different factors such as the incidence angle, the thickness and the materials of metallic and dielectric layers on the absorption spectrum of our absorber is explored. Finally, we offer a high-efficient photonic-crystal absorber based on Si–Ni with the free spectral range 1.46 THz and the finesse 2.496. The calculations reveal that high enough absorption (99.37%) and reflection (96.77%) can be achieved for our absorber. Therefore, it can be used as both a perfect absorber and a perfect reflector over a wide range of THz frequencies.
Keywords:
optical absorption, one-dimensional photonic crystals, transfer-matrix method, terahertz absorbers, dielectric-metal stacks
UDC:
535.3
- Zhu Y, Yu P, Ashalley E, Liu T, Lin F, Ji H, Takahara J, Govorov A and Wang Z, 2020. Planar hot-electron photodetector utilizing high refractive index MoS2 in Fabry-Pérot perfect absorber. Nanotechn. 31: 274001. doi:10.1088/1361-6528/ab8325
- Chen Z, Weng Y, Liu J, Guo N, Yu Y and Xiao L, 2021. Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface. Photon. Res. 9: 27-33. doi:10.1364/PRJ.410554
- Korkmaz S, Turkmen M and Aksu S, 2020. Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy. Sens.Actuat. A: Phys. 301: 111757. doi:10.1016/j.sna.2019.111757
- Bailey M L P, Pierce A T, Simon A J, Edwards D T, Ramian G J, Agladze N I, Sherwin M S, 2015. Narrow-band water-based absorber with high return loss for terahertz spectroscopy. IEEE Trans. Terahertz Sci. Technol. 5: 961-966. doi:10.1109/TTHZ.2015.2477609
- Li X, Zhong X, Hu Y, Li B, Sheng Y, Zhang Y, Weng C, Feng M, Han H and Wang J, 2017. Organic-inorganic copper (II)-based material: A low-toxic, highly stable light absorber for photovoltaic application. J. Phys. Chem. Lett. 8: 1804-1809. doi:10.1021/acs.jpclett.7b00086
- Wu C, Neuner B III, John J, Milder A, Zollars B, Savoy S, Shvets G, 2012. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 14: 024005. doi:10.1088/2040-8978/14/2/024005
- Luo S, Zhao J, Zuo D and Wang X, 2016. Perfect narrow band absorber for sensing applications. Opt. Express. 24: 9288-9294. doi:10.1364/OE.24.009288
- Tan J, Wu Z, Xu K, Meng Y, Jin G, Wang L, Wang Y, 2020. Numerical study of an Au-ZnO-Al perfect absorber for a color filter with a high quality factor. Plasmonics. 15: 293-299. doi:10.1007/s11468-019-01047-z
- Yu Y, Qian Q, Wang C, Fan L, Cheng L, Chen H, Zhao L, 2022. An all-dielectric metasurface long-pass cut-off filter based on a multi-nanocircular array perfect cut-off absorber. Microwave Opt. Technol. Lett. 64: 300-304. doi:10.1002/mop.33106
- Sun H, Gu C, Chen X, Li Z, Liu L, Xu B, Zhou Z, 2017. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction. Sci. Rep. 7: 1-9. doi:10.1038/srep40782
- Chakradhary V K, Baskey H B, Roshan R, Pathik A and Akhtar M J, 2018. Design of frequency selective surface-based hybrid nanocomposite absorber for stealth applications. IEEE Trans. Microwave Theory and Techniques. 66: 4737-4744. doi:10.1109/TMTT.2018.2864298
- Mehrabi S, Rezaei M H and Rastegari M R, 2021. High-efficient plasmonic solar absorber and thermal emitter from ultraviolet to near-infrared region. Opt. Laser Technol. 143: 107323. doi:10.1016/j.optlastec.2021.107323
- Langlais M, Bru H and Ben-Abdallah P, 2014. High temperature layered absorber for thermo-solar systems. J. Quant. Spectr. Rad. Trans. 149: 8-15. doi:10.1016/j.jqsrt.2014.07.023
- Charola S, Patel S K, Dalsaniya K, Jadeja R, Nguyen T K and Dhasarathan V, 2021. Numerical investigation of wideband L-shaped metasurface based solar absorber for visible and ultraviolet region. Physica B: Condens. Matter. 601: 412503. doi:10.1016/j.physb.2020.412503
- Xu R and Takahara J, 2021. Radiative loss control of an embedded silicon perfect absorber in the visible region. Opt. Lett. 46: 805-808. doi:10.1364/OL.417438
- Pitchappa P, Ho C P, Kropelnicki P, Singh N, Kwong D-L and Lee C, 2014. Dual band complementary metamaterial absorber in near infrared region. J. Appl. Phys. 115: 193109. doi:10.1063/1.4878459
- Fu P, Liu F, Ren G J, Su F, Li D and Yao J Q, 2018. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region. Opt. Commun. 417: 62-66. doi:10.1016/j.optcom.2018.02.034
- Wang M and Yang E-H, 2018. THz applications of 2D materials: graphene and beyond. Nano-Struct. Nano-Obj. 15: 107-113. doi:10.1016/j.nanoso.2017.08.011
- Tonouchi M, 2007. Cutting-edge terahertz technology. Nature Photon. 1: 97-105. doi:10.1038/nphoton.2007.3
- Borak A, 2005. Toward bridging the terahertz gap with silicon-based lasers. Science. 308: 638-639. doi:10.1126/science.1109831
- Shen H, Wang Z, Wu Y and Yang B, 2016. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 6: 4505-4520. doi:10.1039/C5RA21373H
- Withayachumnankul W, Fujita M and Nagatsuma T, 2018. Integrated silicon photonic crystals toward terahertz communications. Adv. Opt. Mat. 6: 1800401. doi:10.1002/adom.201800401
- Hosseinzadeh Sani M, Ghanbari A and Saghaei H, 2020. An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt. Quant. Electron. 52: 1-15. doi:10.1007/s11082-020-02418-1
- Li M, Ling J, He Y, Javid U A, Xue S and Lin Q, 2020. Lithium niobate photonic-crystal electro-optic modulator. Nature Commun. 11: 1-8. doi:10.1038/s41467-020-17950-7
- Safinezhad A, Babaei Ghoushji H, Shiri M and Rezaei M H, 2021. High-performance and ultrafast configurable all-optical photonic crystal logic gates based on interference effects. Opt. Quant. Electron. 53: 1-20. doi:10.1007/s11082-021-02856-5
- Wang X, Liang Y, Wu L, Guo J, Dai X and Xiang Y, 2018. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene. Opt. Lett. 43: 4256-4259. doi:10.1364/OL.43.004256
- Wang Z, Chan C T, Zhang W, Ming N and Sheng P, 2001. Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency. Phys. Rev. B. 64: 113108. doi:10.1103/PhysRevB.64.113108
- Sigalas M.M, Chan C T, Ho K and Soukoulis C M, 1995. Metallic photonic band-gap materials. Phys. Rev. B. 52: 11744. doi:10.1103/PhysRevB.52.11744
- Lu G, Zhang K, Zhao Y, Zhang L, Shang Z, Zhou H, Diao C and Zhou X, 2021. Perfect optical absorbers by all-dielectric photonic crystal/metal heterostructures due to optical Tamm state. Nanomater. 11: 3447. doi:10.3390/nano11123447
- Choi Y-K, Ha Y-K, Kim J-E, Park H Y and Kim K, 2004. Antireflection film in one-dimensional metallo-dielectric photonic crystals. Opt. Commun. 230: 239-243. doi:10.1016/j.optcom.2003.11.028
- Chen S, Wang Y, Yao D and Song Z, 2009. Absorption enhancement in 1D Ag/SiO2 metallic-dielectric photonic crystals. Opt. Appl. 39: 473-479.
- Li Y, Qi L, Yu J, Chen Z, Yao Y and Liu X, 2017. One-dimensional multiband terahertz graphene photonic crystal filters. Opt. Mater. Express. 7: 1228-1239. doi:10.1364/OME.7.001228
- Fan Y, Tu L, Zhang F, Fu Q, Zhang Z, Wei Z, Li H, 2018. Broadband terahertz absorption in graphene-embedded photonic crystals. Plasmonics. 13: 1153-1158. doi:10.1007/s11468-017-0615-0
- D'Aguanno G, Mattiucci N, Scalora M, Bloemer M and Zheltikov A, 2004. Density of modes and tunneling times in finite one-dimensional photonic crystals: a comprehensive analysis. Phys. Rev. E. 70: 016612. doi:10.1103/PhysRevE.70.016612
- Segovia-Chaves F and Vinck-Posada H, 2018. Temperature dependence of defect mode in band structures of the one-dimensional photonic crystal. Optik. 154: 467-472. doi:10.1016/j.ijleo.2017.10.030
- Jiang B, Zhou W-J, Chen W, Liu A-J and Zheng W-H, 2011. Improved plane-wave expansion method for band structure calculation of metal photonic crystal. Chin. Phys.Lett. 28: 034209. doi:10.1088/0256-307X/28/3/034209
- Pratibha K, Sinngh M, Soni S, Garg T, Tuli V, Gaurav S, Shankar S, 2022. Influence of defect layer of ZnS/air on one dimensional photonic crystal structure of gallium phosphide-crown glass using lumerical FDTD. J. Optoel. Adv. Mater. 24: 230-235.
- Çetin A, 2020. Transmission properties of defect modes with different defect layer geometries in one-dimensional photonic crystals. Int. J. Engin. Sci. Inv. (IJESI). 9: 56-60.
- Zaky Z A, Sharma A, Alamri S and Aly A H, 2021. Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm-Fano resonance in one-dimensional photonic crystals. Appl. Nanosci. 11: 2261-2270. doi:10.1007/s13204-021-01965-7
- Elmahdy N A, Esmail M S and Mohamed M, 2018. Characterization of a thermal sensor based on one-dimensional photonic crystal with central liquid crystal defect. Optik. 170: 444-451. doi:10.1016/j.ijleo.2018.05.117
- Jamshidi-Ghaleh K and Ebrahimpour Z, 2013. One-way absorption behaviour in defective 1D dielectric-metal photonic crystal. Europop. Phys. J. D. 67: 1-4. doi:10.1140/epjd/e2012-30383-x
- Palik E D. Handbook of optical constants of solids. Vol. 3. Elsevier Inc., 1997. doi:10.1016/B978-012544415-6/50097-2
- Rakić A D, Djurišić A B, Elazar J M and Majewski M L, 1998. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37: 5271-5283. doi:10.1364/AO.37.005271
- Tavana S, Zarifkar A and Miri M, 2022. Tunable terahertz perfect absorber and polarizer based on one-dimensional anisotropic graphene photonic crystal. IEEE Photon. J. 14(3): 1-9. doi:10.1109/JPHOT.2022.3178163
-
Досліджено спектральний відгук одновимірного діелектрично-металевого фотонно-кристалічного поглинача. Спектри відбиття та поглинання в діапазоні частот 0,1–10 ТГц одержано за методом матриці перенесення. Досліджено вплив різних факторів, таких як кут падіння випромінювання, товщина та матеріали металевих і діелектричних шарів, на спектр поглинання поглинача. Запропоновано високоефективний фотонно-кристалічний поглинач на основі Si–Ni з вільним спектральним діапазоном 1,46 ТГц і F-фактором різкості 2,496. Розрахунки показали, що з нашим поглиначем можна досягти і високого поглинання (99,37%), і високого відбивання (96,77%). Тому його можна використовувати як ідеальний поглинач та ідеальний відбивач у широкому діапазоні терагерцових частот.
Ключові слова: поглинання, одновимірні фотонні кристали, метод матриці переносу, терагерцові поглиначі, діелектрично-металеві стопи
© Ukrainian Journal of Physical Optics ©