Ukrainian Journal of Physical Optics


2023 Volume 24, Issue 1


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Absorption of one-dimensional dielectric-metal photonic-crystal absorbers for terahertz range

Tarek I Alanazi

Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia, tarek.alanazi@nbu.edu.sa

ABSTRACT

We study the spectral response of a one-dimensional dielectric–metal photonic-crystal absorber. The reflection and absorption spectra in the frequency range 0.1–10 THz are obtained by applying a transfer-matrix method. The influence of different factors such as the incidence angle, the thickness and the materials of metallic and dielectric layers on the absorption spectrum of our absorber is explored. Finally, we offer a high-efficient photonic-crystal absorber based on Si–Ni with the free spectral range 1.46 THz and the finesse 2.496. The calculations reveal that high enough absorption (99.37%) and reflection (96.77%) can be achieved for our absorber. Therefore, it can be used as both a perfect absorber and a perfect reflector over a wide range of THz frequencies.

Keywords: optical absorption, one-dimensional photonic crystals, transfer-matrix method, terahertz absorbers, dielectric-metal stacks

UDC: 535.3

    1. Zhu Y, Yu P, Ashalley E, Liu T, Lin F, Ji H, Takahara J, Govorov A and Wang Z, 2020. Planar hot-electron photodetector utilizing high refractive index MoS2 in Fabry-Pérot perfect absorber. Nanotechn. 31: 274001. doi:10.1088/1361-6528/ab8325
    2. Chen Z, Weng Y, Liu J, Guo N, Yu Y and Xiao L, 2021. Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface. Photon. Res. 9: 27-33. doi:10.1364/PRJ.410554
    3. Korkmaz S, Turkmen M and Aksu S, 2020. Mid-infrared narrow band plasmonic perfect absorber for vibrational spectroscopy. Sens.Actuat. A: Phys. 301: 111757. doi:10.1016/j.sna.2019.111757
    4. Bailey M L P, Pierce A T, Simon A J, Edwards D T, Ramian G J, Agladze N I, Sherwin M S, 2015. Narrow-band water-based absorber with high return loss for terahertz spectroscopy. IEEE Trans. Terahertz Sci. Technol. 5: 961-966. doi:10.1109/TTHZ.2015.2477609
    5. Li X, Zhong X, Hu Y, Li B, Sheng Y, Zhang Y, Weng C, Feng M, Han H and Wang J, 2017. Organic-inorganic copper (II)-based material: A low-toxic, highly stable light absorber for photovoltaic application. J. Phys. Chem. Lett. 8: 1804-1809. doi:10.1021/acs.jpclett.7b00086
    6. Wu C, Neuner B III, John J, Milder A, Zollars B, Savoy S, Shvets G, 2012. Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J. Opt. 14: 024005. doi:10.1088/2040-8978/14/2/024005
    7. Luo S, Zhao J, Zuo D and Wang X, 2016. Perfect narrow band absorber for sensing applications. Opt. Express. 24: 9288-9294. doi:10.1364/OE.24.009288
    8. Tan J, Wu Z, Xu K, Meng Y, Jin G, Wang L, Wang Y, 2020. Numerical study of an Au-ZnO-Al perfect absorber for a color filter with a high quality factor. Plasmonics. 15: 293-299. doi:10.1007/s11468-019-01047-z
    9. Yu Y, Qian Q, Wang C, Fan L, Cheng L, Chen H, Zhao L, 2022. An all-dielectric metasurface long-pass cut-off filter based on a multi-nanocircular array perfect cut-off absorber. Microwave Opt. Technol. Lett. 64: 300-304. doi:10.1002/mop.33106
    10. Sun H, Gu C, Chen X, Li Z, Liu L, Xu B, Zhou Z, 2017. Broadband and broad-angle polarization-independent metasurface for radar cross section reduction. Sci. Rep. 7: 1-9. doi:10.1038/srep40782
    11. Chakradhary V K, Baskey H B, Roshan R, Pathik A and Akhtar M J, 2018. Design of frequency selective surface-based hybrid nanocomposite absorber for stealth applications. IEEE Trans. Microwave Theory and Techniques. 66: 4737-4744. doi:10.1109/TMTT.2018.2864298
    12. Mehrabi S, Rezaei M H and Rastegari M R, 2021. High-efficient plasmonic solar absorber and thermal emitter from ultraviolet to near-infrared region. Opt. Laser Technol. 143: 107323. doi:10.1016/j.optlastec.2021.107323
    13. Langlais M, Bru H and Ben-Abdallah P, 2014. High temperature layered absorber for thermo-solar systems. J. Quant. Spectr. Rad. Trans. 149: 8-15. doi:10.1016/j.jqsrt.2014.07.023
    14. Charola S, Patel S K, Dalsaniya K, Jadeja R, Nguyen T K and Dhasarathan V, 2021. Numerical investigation of wideband L-shaped metasurface based solar absorber for visible and ultraviolet region. Physica B: Condens. Matter. 601: 412503. doi:10.1016/j.physb.2020.412503
    15. Xu R and Takahara J, 2021. Radiative loss control of an embedded silicon perfect absorber in the visible region. Opt. Lett. 46: 805-808. doi:10.1364/OL.417438
    16. Pitchappa P, Ho C P, Kropelnicki P, Singh N, Kwong D-L and Lee C, 2014. Dual band complementary metamaterial absorber in near infrared region. J. Appl. Phys. 115: 193109. doi:10.1063/1.4878459
    17. Fu P, Liu F, Ren G J, Su F, Li D and Yao J Q, 2018. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region. Opt. Commun. 417: 62-66. doi:10.1016/j.optcom.2018.02.034
    18. Wang M and Yang E-H, 2018. THz applications of 2D materials: graphene and beyond. Nano-Struct. Nano-Obj. 15: 107-113. doi:10.1016/j.nanoso.2017.08.011
    19. Tonouchi M, 2007. Cutting-edge terahertz technology. Nature Photon. 1: 97-105. doi:10.1038/nphoton.2007.3
    20. Borak A, 2005. Toward bridging the terahertz gap with silicon-based lasers. Science. 308: 638-639. doi:10.1126/science.1109831
    21. Shen H, Wang Z, Wu Y and Yang B, 2016. One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 6: 4505-4520. doi:10.1039/C5RA21373H
    22. Withayachumnankul W, Fujita M and Nagatsuma T, 2018. Integrated silicon photonic crystals toward terahertz communications. Adv. Opt. Mat. 6: 1800401. doi:10.1002/adom.201800401
    23. Hosseinzadeh Sani M, Ghanbari A and Saghaei H, 2020. An ultra-narrowband all-optical filter based on the resonant cavities in rod-based photonic crystal microstructure. Opt. Quant. Electron. 52: 1-15. doi:10.1007/s11082-020-02418-1
    24. Li M, Ling J, He Y, Javid U A, Xue S and Lin Q, 2020. Lithium niobate photonic-crystal electro-optic modulator. Nature Commun. 11: 1-8. doi:10.1038/s41467-020-17950-7
    25. Safinezhad A, Babaei Ghoushji H, Shiri M and Rezaei M H, 2021. High-performance and ultrafast configurable all-optical photonic crystal logic gates based on interference effects. Opt. Quant. Electron. 53: 1-20. doi:10.1007/s11082-021-02856-5
    26. Wang X, Liang Y, Wu L, Guo J, Dai X and Xiang Y, 2018. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene. Opt. Lett. 43: 4256-4259. doi:10.1364/OL.43.004256
    27. Wang Z, Chan C T, Zhang W, Ming N and Sheng P, 2001. Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency. Phys. Rev. B. 64: 113108. doi:10.1103/PhysRevB.64.113108
    28. Sigalas M.M, Chan C T, Ho K and Soukoulis C M, 1995. Metallic photonic band-gap materials. Phys. Rev. B. 52: 11744. doi:10.1103/PhysRevB.52.11744
    29. Lu G, Zhang K, Zhao Y, Zhang L, Shang Z, Zhou H, Diao C and Zhou X, 2021. Perfect optical absorbers by all-dielectric photonic crystal/metal heterostructures due to optical Tamm state. Nanomater. 11: 3447. doi:10.3390/nano11123447
    30. Choi Y-K, Ha Y-K, Kim J-E, Park H Y and Kim K, 2004. Antireflection film in one-dimensional metallo-dielectric photonic crystals. Opt. Commun. 230: 239-243. doi:10.1016/j.optcom.2003.11.028
    31. Chen S, Wang Y, Yao D and Song Z, 2009. Absorption enhancement in 1D Ag/SiO2 metallic-dielectric photonic crystals. Opt. Appl. 39: 473-479.
    32. Li Y, Qi L, Yu J, Chen Z, Yao Y and Liu X, 2017. One-dimensional multiband terahertz graphene photonic crystal filters. Opt. Mater. Express. 7: 1228-1239. doi:10.1364/OME.7.001228
    33. Fan Y, Tu L, Zhang F, Fu Q, Zhang Z, Wei Z, Li H, 2018. Broadband terahertz absorption in graphene-embedded photonic crystals. Plasmonics. 13: 1153-1158. doi:10.1007/s11468-017-0615-0
    34. D'Aguanno G, Mattiucci N, Scalora M, Bloemer M and Zheltikov A, 2004. Density of modes and tunneling times in finite one-dimensional photonic crystals: a comprehensive analysis. Phys. Rev. E. 70: 016612. doi:10.1103/PhysRevE.70.016612
    35. Segovia-Chaves F and Vinck-Posada H, 2018. Temperature dependence of defect mode in band structures of the one-dimensional photonic crystal. Optik. 154: 467-472. doi:10.1016/j.ijleo.2017.10.030
    36. Jiang B, Zhou W-J, Chen W, Liu A-J and Zheng W-H, 2011. Improved plane-wave expansion method for band structure calculation of metal photonic crystal. Chin. Phys.Lett. 28: 034209. doi:10.1088/0256-307X/28/3/034209
    37. Pratibha K, Sinngh M, Soni S, Garg T, Tuli V, Gaurav S, Shankar S, 2022. Influence of defect layer of ZnS/air on one dimensional photonic crystal structure of gallium phosphide-crown glass using lumerical FDTD. J. Optoel. Adv. Mater. 24: 230-235.
    38. Çetin A, 2020. Transmission properties of defect modes with different defect layer geometries in one-dimensional photonic crystals. Int. J. Engin. Sci. Inv. (IJESI). 9: 56-60.
    39. Zaky Z A, Sharma A, Alamri S and Aly A H, 2021. Theoretical evaluation of the refractive index sensing capability using the coupling of Tamm-Fano resonance in one-dimensional photonic crystals. Appl. Nanosci. 11: 2261-2270. doi:10.1007/s13204-021-01965-7
    40. Elmahdy N A, Esmail M S and Mohamed M, 2018. Characterization of a thermal sensor based on one-dimensional photonic crystal with central liquid crystal defect. Optik. 170: 444-451. doi:10.1016/j.ijleo.2018.05.117
    41. Jamshidi-Ghaleh K and Ebrahimpour Z, 2013. One-way absorption behaviour in defective 1D dielectric-metal photonic crystal. Europop. Phys. J. D. 67: 1-4. doi:10.1140/epjd/e2012-30383-x
    42. Palik E D. Handbook of optical constants of solids. Vol. 3. Elsevier Inc., 1997. doi:10.1016/B978-012544415-6/50097-2
    43. Rakić A D, Djurišić A B, Elazar J M and Majewski M L, 1998. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37: 5271-5283. doi:10.1364/AO.37.005271
    44. Tavana S, Zarifkar A and Miri M, 2022. Tunable terahertz perfect absorber and polarizer based on one-dimensional anisotropic graphene photonic crystal. IEEE Photon. J. 14(3): 1-9. doi:10.1109/JPHOT.2022.3178163

    Досліджено спектральний відгук одновимірного діелектрично-металевого фотонно-кристалічного поглинача. Спектри відбиття та поглинання в діапазоні частот 0,1–10 ТГц одержано за методом матриці перенесення. Досліджено вплив різних факторів, таких як кут падіння випромінювання, товщина та матеріали металевих і діелектричних шарів, на спектр поглинання поглинача. Запропоновано високоефективний фотонно-кристалічний поглинач на основі Si–Ni з вільним спектральним діапазоном 1,46 ТГц і F-фактором різкості 2,496. Розрахунки показали, що з нашим поглиначем можна досягти і високого поглинання (99,37%), і високого відбивання (96,77%). Тому його можна використовувати як ідеальний поглинач та ідеальний відбивач у широкому діапазоні терагерцових частот.

    Ключові слова: поглинання, одновимірні фотонні кристали, метод матриці переносу, терагерцові поглиначі, діелектрично-металеві стопи


© Ukrainian Journal of Physical Optics ©