Ukrainian Journal of Physical Optics
2022 Volume 23, Issue 4
ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)
Triple-cation perovskite/silicon tandem solar cell
Asmontas S., Gradauskas J., Griguceviciene A., Leinartas K., Lucun A., Mujahid M., Petrauskas K., Selskis A., Suziedelis A., Silenas A. and Sirmulis E.
Center for Physical Sciences and Technology, Sauletekio Avenue 3, 10257 Vilnius
Ukr. J. Phys. Opt.
Vol. 23
,
Issue 4 , pp. 193 - 200 (2022).
doi:10.3116/16091833/23/4/193/2022
ABSTRACT
A tandem solar cell consisting of perovskite cell overlaid upon silicon cell is a promising option for surpassing the Shockley–Queisser limit for single-junction solar cells. We investigate photovoltaic properties of a triple-cation perovskite/silicon four-terminal tandem solar cell composed of a semitransparent Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3 layer-based perovskite cell placed onto industrial n-type monocrystalline bifacial PERT silicon solar cell. The power-conversion efficiency of 26.6% achieved by us is one of the highest values among those reported for the four-terminal perovskite/silicon tandem solar cells.
Keywords:
perovskites, tandem solar cells, power-conversion efficiency, silicon p-n junctions
UDC:
535.215
- Yu C, Xu S, Yao J and Han S, 2018. Recent advances in and new perspectives on crystalline silicon solar cells with carrier-selective passivation contacts. Crystals. 8: 430-41. doi:10.3390/cryst8110430
- Andreani L C, Bozzola A, Kowalczewski P, Liscidini M and Redorici L, 2019. Silicon solar cells: toward the efficiency limits. Adv. Phys. 4: 1548305. doi:10.1080/23746149.2018.1548305
- Węgierek P, Pastuszak J, Dziadosz K and Turek M, 2020. Influence of substrate type and dose of implanted ions on the electrical parameters of silicon in terms of improving the efficiency of photovoltaic cells. Energies. 13: 6708. doi:10.3390/en13246708
- Tiedje T, Yablonovitch E, Cody G D and Brooks B G, 1984. Limiting efficiency of silicon solar cells. IEEE Trans. Electron. Devices. 31: 711-716. doi:10.1109/T-ED.1984.21594
- Ašmontas S, Gradauskas J, Sužiedėlis A, Šilėnas A, Širmulis E, Vaičikauskas V, Vaičiūnas V, Žalys O, Fedorenko L and Bulat L, 2016. Photovoltage formation across GaAs p-n junction under illumination of intense laser radiation. Opt. Quant. Electron. 48: 448. doi:10.1007/s11082-016-0702-z
- Ašmontas S, Gradauskas J, Sužiedėlis A, Šilėnas A, Širmulis E, Švedas V, Vaičikauskas V, Vaičiūnas V, Žalys O and Kostylyov V, 2017. Photovoltage formation across Si p-n junction exposed to laser radiation. Mater. Sci. - Poland. 36: 337-340. doi:10.1515/msp-2017-0106
- Ašmontas S, Gradauskas J, Sužiedėlis A, Šilėnas A, Širmulis E, Švedas V, Vaičikauskas V and Žalys O, 2018. Hot carrier impact on photovoltage formation in solar cells. Appl. Phys. Lett. 113: 071103. doi:10.1063/1.5043155
- Ašmontas S, Fedorenko L, Vlasiuk V, Gorbanyuk T, Kostylyov V, Lytovchenko V, Gradauskas J, Sužiedėlis A, Širmulis E, Žalys O and Masalskyi O, 2020. Suppression of hot carriers by nanoporous silicon for improved operation of a solar cell. Ukr. J. Phys. Opt. 21: 207-214. doi:10.3116/16091833/21/4/207/2020
- Ašmontas S, Čerškus A, Gradauskas J, Grigucevičienė A, Leinartas K, Lučun A, Petrauskas K, Selskis A, Sužiedėlis A, Širmulis E and Juškėnas R, 2021. Cesium-containing triple cation perovskite solar cells. Coatings. 11: 279. doi:10.3390/coatings11030279
- Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L, Schlatmann R, Nazeeruddin M K, Hagfeldt A, Grätzel M and Rech B, 2015. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9: 81-88. doi:10.1039/C5EE02965A
- McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J and 2016. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science. 351: 151-155. doi:10.1126/science.aad5845
- Werner J, Niesen B and Ballif C, 2017. Perovskite/silicon tandem solar cells: marriage of convenience or true love story? - An overview. Adv. Matter. 5: Interf. 1700731. doi:10.1002/admi.201700731
- Chen B, Yu Z, Liu K, Zheng X, Liu Y, Shi J, Spronk D, Rudd P N, Holman Z and Huang J, 2019. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule. 3: 1-14. doi:10.1016/j.joule.2018.10.003
- Shen H, Walter D, Wu Y, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P and Catchpole K R, 2019. Monolithic perovskite/Si tandem solar cell: pathways to over 30% efficiency. Adv. Energy Mater. 10: 1902840. doi:10.1002/aenm.201902840
- Ho-Baillie A W Y, Zheng J, Mahmud M A, Ma F-J, McKenzie D R and Green M A, 2021. Recent progress and future prospects of perovskite solar cells. Appl. Phys. Rev. 8: 041307. doi:10.1063/5.0061483
- Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang J L, Chang S Y, Zhang Z, Huang W, Wang R, Meng D, Gao F and Yang Y, 2019. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nature Commun. 10: 570. doi:10.1038/s41467-019-08386-9
- Sahli F, Werner J, Kamino B A, Bräuninger M, Monnard R, Paviet-Salomon B, Barraud L, Ding L, Leon J J D, Sacchetto D et al., 2018. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Mater. 17: 820-826. doi:10.1038/s41563-018-0115-4
- Polman A, Knight M, Garnett E C, Ehrler B and Sinke W C, 2016. Photovoltaic materials: present efficiencies and future challenges. Science. 352: aad4424-1-aad442-10. doi:10.1126/science.aad4424
- Jaysankar M, Filipič M, Zielenski B, Schmager R, Song W, Qiu W, Paetzold U W, Aernouts T, Debucquoy M, Gehlhaar R and Poortmans J, 2018. Perovskite-silicon tandem solar modules with optimized light harvesting. Energy Environ. Sci. 11: 1489-1498. doi:10.1039/C8EE00237A
- Charibzadeh S, Hossain I M, Fassl P, Nejand B A, Abzieher T, Schultes M, Ahlswede E, Jackson P, Powalla M, Schäfer S, Rienäcker M, Wietler T, Peibst R, Lemmer U, Richards B S and Paetzold U W, 2020. 2D/3D heterostructure for semitransporant perovskite solar cell with engineering badgap enables efficiencies exceeding 25% in four-terminal tandems with silicon and CIGS. Adv. Funct. Mater. 30: 1909919. doi:10.1002/adfm.201909919
- Yeom K M, Kim S U, Woo M Y, Noh J H and Im S H, 2020. Recent progress in metal halide perovskite-based tandem solar cell. Adv. Mater. 32: 2002228. doi:10.1002/adma.202002228
- De Wolf S, Holovsky J, Moon S-J, Löper P, Niesen B, Ledinsky M, Haug F-J, Yum J-H and Ballif C, 2014. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5: 1035-1039. doi:10.1021/jz500279b
- Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J and Herz L M, 2014. High carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26: 1584-11589. doi:10.1002/adma.201305172
- Karakus M, Jensen S A, D'Angelo F, Turchinovich D, Bonn M and Cánovas E, 2015. Phonon-electron scattering limits free charge mobility in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6: 4991-4996. doi:10.1021/acs.jpclett.5b02485
- Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A and Snaith H J, 2013. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 342: 341-344. doi:10.1126/science.1243982
- Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N and Fu F, 2020 Near-infrared-transparent perovskite solar cells and perovskite-based tandem photovoltaics. Small Methods. 4: 2000395. doi:10.1002/smtd.202000395
- Staub F, Hempel H, Hebig J-C, Mock J, Paetzold U W, Rau U, Unold T and Kirchartz T, 2016. Beyond bulk lifetimes: insights into lead halide perovskite films from time-resolved photoluminescence. Phys. Rev. Appl. 6: 044017. doi:10.1103/PhysRevApplied.6.044017
- Solanki A, Yadav P, Turren-Cruz S-H, Lim S S, Saliba M and Sum T C, 2019. Cation influence on carrier dynamics in perovskite solar cells. Nano Energy. 58: 604-611. doi:10.1016/j.nanoen.2019.01.060
- Saliba M, Matsui T, Seo J Y, Domaski K, Correa-Baena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A and Grätzel M, 2016. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9: 1989-1997. doi:10.1039/C5EE03874J
- Singh T and Miyasaka T, 2018. Stabilizing the efficiency beyond 20% with the mixed cation perovskite solar cell fabricated in ambient air under controlled humidity. Adv. Energy Mater. 8: 1700677. doi:10.1002/aenm.201700677
- Domanski K, Alharbi E A, Hagfeldt A, Grätzel M and Tress W, 2018. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nature Energy. 3: 61-67 doi:10.1038/s41560-017-0060-5
- Wang J, Zou X, Zhu J, Cheng J, Chen D, Bai X, Yao Y, Chang C, Yu X, Liu B, Zhou Z and Li G, 2020. Effect of optimization of TiO2 electron transport layer on performance of perovskite solar cells with rough FTO substrates. Materials. 13: 2272. doi:10.3390/ma13102272
- Ašmontas S, Čerškus A, Gradauskas J, Grigucevičienė A, Juškėnas R, Leinartas K, Lučun A, Petrauskas K, Selskis A, Staišiūnas L, Sužiedėlis A, Šilėnas A and Širmulis E, 2022. Photoelectric properties of planar and mesoporous structured perovskite solar cells. Materials. 15: 4300. doi:10.3390/ma15124300
- Mazarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J and Schlatmann R, 2019. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9: 1803241. doi:10.1002/aenm.201803241
- Samantaray M R, Ghosh D S and Chander N, 2022, Four-terminal perovskite/silicon tandem solar cells based on large-area perovskite solar cells utilizing low-cost copper semi-transparent electrode. Appl. Phys. A. 128: 111. doi:10.1007/s00339-021-05234-w
-
Тандемний сонячний елемент, який складається з перовскитового елементу, поміщеного поверх кремнієвого елементу, є багатообіцяючим варіантом для перевищення межі Шоклі–Квайссера для одноперехідних сонячних елементів. Ми дослідили фотоелектричні властивості трикатіонного чотиритермінального тандемного перовскит/кремнієвого сонячного елемента, який складається з перовскитового елемента на основі напівпрозорого шару Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3, розміщеного на промисловому кремнієвому монокристалічному двосторонньому сонячному елементі PERT n-типу. Досягнута нами ефективність перетворення енергії у 26.6% є одним із найвищих значень, зареєстрованих для чотиритермінальних тандемних перовскит/кремнієвих сонячних елементів.
Ключові слова: перовскіти, тандемні сонячні елементи, ефективність перетворення енергії, кремнієві p-n переходи
© Ukrainian Journal of Physical Optics ©