Ukrainian Journal of Physical Optics


2022, Volume 23, Issue 3


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Structural changes in As40S60-xSex thin films due to annealing and irradiation: Raman spectroscopy studies

1Voynarovych I., 2Hopko M., 2Edinak O., 1,2Gomonnai A. V.

1Institute of Electron Physics, Ukrainian National Academy of Sciences, 21 Universytetska Street, 88017 Uzhhorod, Ukraine; e-mail: voynar@ukr.net;
2Uzhhorod National University, 46 Pidhirna Street, 88000 Uzhhorod, Ukraine

ABSTRACT

We discuss evolution of Raman spectra for vitreous chalcogenide As40S60-xSex (x = 0, 20, 30, 40 and 60 at. %) layers, which occurs under thermal annealing and irradiation with the light of different wavelengths. It is demonstrated that composition dependences of the spectral Raman intensities are consistent with existence of ‘mixed’ As2S3-xSex pyramids. We reveal that the changes in the Raman spectra are associated with thermo- and photo-induced polymerization of the molecular fragments of mixed As4S(Se)4-type cages and S(Se) rings or chains.


Keywords:
ternary chalcogenide As–S–Se glasses, thin films, photo-induced changes, Raman spectra

UDC: 535.4

    1. Kolobov A and Tominaga J. Chalcogenides: metastability and phase change phenomena. Berlin: Springer, 2012. doi:10.1007/978-3-642-28705-3
    2. Yannopoulos S. Photo-plastic effects in chalcogenide glasses: Raman scattering studies. In: Kolobov A (Ed.), Photo-Induced Metastability in Amorphous Semiconductors. Weinheim: Wiley-VCH, 2003.
    3. Frumar M, Frumarová B, Wágner T and Nĕmec P. Photo-induced phenomena in amorphous and glassy chalcogenides. In: Kolobov A V (Ed.), Photo-Induced Metastability in Amorphous Semiconductors. Weinheim: Wiley-VCH, 2003.
    4. Wang F and Boolchand P. Photostructural transformations and global connectedness of network glasses. In: Lucovsky G and Popescu M (Eds.), Non-Crystalline Materials for Optoelectronics. Bucharest: INOE, 2004.
    5. Tanaka K and Shimakawa K. Amorphous chalcogenide semiconductors and related materials. Berlin: Springer, 2011. doi:10.1007/978-1-4419-9510-0
    6. Shpotyuk O, 1995. Amorphous chalcogenide semiconductors for dosimetry of high-energy ionizing radiation. Rad. Phys. Chem. 46: 1279-1282. doi:10.1016/0969-806X(95)00369-9
    7. Wutting M and Yamada N, 2007. Phase-change materials for rewriteable data storage. Nature Mater. 6: 824-832. doi:10.1038/nmat2009
    8. Laniel J M, Ho N, Vallee R and Villeneuve A J, 2005. Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation. J. Opt. Soc. Amer. B. 22: 437-445. doi:10.1364/JOSAB.22.000437
    9. Toupin P, Brilland L, Renversez G and Troles J, 2013. All-solid all-chalcogenide microstructured optical fiber. Opt. Express. 21: 14643-14648. doi:10.1364/OE.21.014643
    10. Ahmad R, Rochette M and Baker Ch, 2011. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 36: 2886-2888. doi:10.1364/OL.36.002886
    11. Azhniuk Y M, Dzhagan V M, Solonenko D, Mukherjee A, Loya V Y, Grytsyshche I V, Lopushansky V V, Gomonnai A V and Zahn D R T, 2019. Laser annealing-induced formation of CdS nanocrystals in Cd-doped amorphous As2S3 thin films. Phys. Stat. Sol. B. 256: 1800298. doi:10.1002/pssb.201800298
    12. Azhniuk Y M, Solonenko D, Loya V Y, Kryshenik V M, Lopushansky V V, Mukherjee A, Gomonnai A V and Zahn D R T, 2019. Flexoelectric and local heating effects on CdSe nanocrystals in amorphous As2Se3 films. Mater. Res. Express. 6: 095913. doi:10.1088/2053-1591/ab3241
    13. Azhniuk Y M, Solonenko D, Sheremet E, Dzhagan V M, Loya V Y, Grytsyshche I V, Schulze S, Hietschold M, Gomonnai A V and Zahn D R T, 2019. Structural and optical study of Zn doped As2Se3 thin films: Evidence for photoinduced formation of ZnSe nanocrystallites. AIP Adv. 9: 065212. doi:10.1063/1.5086974
    14. Azhniuk Y, Dzhagan V, Solonenko D, Loya V, Grytsyshche I, Lopushansky V V, Gomonnai A V and Zahn D R T, 2019. In-doped As2Se3 thin films studied by Raman and X-ray photoelectron spectroscopies. Appl. Surf. Sci. 471: 943-949. doi:10.1016/j.apsusc.2018.12.097
    15. Azhniuk Y M, Stoyka V, Petryshynets I, Rubish V M, Guranich O G, Gomonnai A V, Zahn D R T, 2012. SbSI nanocrystal formation in As-Sb-S-I glass under laser beam. Mater. Res. Bull. 47: 1520-1522. doi:10.1016/j.materresbull.2012.02.036
    16. Kozdras A, Golovchak R, Shpotyuk O and Szymura S, 2011. Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons. J. Mater. Res. 26: 2420-2427. doi:10.1557/jmr.2011.264
    17. Voynarovych I, Buzek J, Palka K and Vlček M, 2016. Spectral dependence of photoinduced optical effects in As40S60-xSex thin films. Thin Sol. Films. 608: 8-15. doi:10.1016/j.tsf.2016.04.013
    18. Wojdyr M, 2010. Fityk: a general-purpose peak fitting program. J. Appl. Cryst. 43: 1126-1128. doi:10.1107/S0021889810030499
    19. Solin S A and Papatheodorou G N, 1977. Irreversible thermostructural transformations in amorphous As2S3 films: a light-scattering study. Phys. Rev. B. 15: 2084-2090. doi:10.1103/PhysRevB.15.2084
    20. Shpotyuk O I, Kasperczyk J and Kityk I V, 1997. Mechanism of reversible photoinduced optical effects in amorphous As2S3. J. Non-Cryst. Sol. 215: 218-225. doi:10.1016/S0022-3093(97)00058-6
    21. Nemanich R J, Connel G A N, Hayers T M and Street R A, 1978. Thermally induced effects in evaporated chalcogenide films. Phys. Rev. B. 18: 6900-6914. doi:10.1103/PhysRevB.18.6900
    22. Shpotyuk O I, 2003. On the microstructural origin of reversible photo-induced transformations in amorphous As2Se3. Opto-Electron. Rev. 11: 19-25.
    23. Frumar M, Polák Z and Černošek Z, 1999. Raman spectra and photostructural changes in the short-range order of amorphous As-S chalcogenides. J. Non-Cryst Sol. 256&257: 105-110. doi:10.1016/S0022-3093(99)00454-8
    24. Wagner T, Kasap S O, Vlček M, Sklenar A and Stronski A V, 1998. The structure of AsxS100-x glasses studied by modulated temperature differential scanning calorimetry and Raman spectroscopy. J. Non-Cryst. Sol. 227-230: 752-756. doi:10.1016/S0022-3093(98)00194-X
    25. Golovchak R, Shpotyuk O, McCloy J S, Riley B J, Windisch C F, Sundaram S R, Kovalskiy A and Jain H, 2010. Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS. Phil. Mag. 90: 4489-4501. doi:10.1080/14786435.2010.510455
    26. Liska M, Chromcikova M, Holubova Y and Cernosek Z, 2014. Thermodynamic model and structure of As2S3-As2Se3 glasses based on the MCR analysis of Raman spectra. Ceramics. 58: 95-98.
    27. Tanaka K, 1980. Optical properties and photoinduced changes in amorphous As-S films. Thin Sol. Films. 66: 271-279. doi:10.1016/0040-6090(80)90381-8
    28. Freitas J A, Strom U and Treacy D J, 1983. Raman scattering of the mixed chalcogenide glass system As2SxSe3-x. J. Non-Cryst. Solids. 59&60: 875-878. doi:10.1016/0022-3093(83)90309-5
    29. Stronski A V, Vlček M and Olesenko P F, 2001. Fourier Raman spectroscopy studies of the As40S60-xSex glasses. Semicond. Phys., Quant. Electron. & Optoelectron. 4: 210-213. doi:10.15407/spqeo4.03.210
    30. Chang I F and Mitra S S, 1968. Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 172: 924-933. doi:10.1103/PhysRev.172.924
    31. Iovu M S, Kamitsos E I, Varsamis C P E, Boolchand P and Popescu M, 2005. Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals. Chalcogenide Lett. 2: 21-26
    32. Li W, Seal S, Rivero C, Lopez C, Richardson K, Pope A, Schulte A, Myneni S, Jain H, Antoine K and Miller A C, 2005. Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X- ray photoelectron, and extended X-ray absorption fine structure spectroscopies. J. Appl. Phys. 98: 053503. doi:10.1063/1.2009815
    33. Stronski A V, Vlček M, Kostyukevych S A, Tomchuk V M and Kostyukevych E V, 2002. Study of non-reversible photostructural transformations in As40S60-xSex layers applied for fabrication of holographic protective elements. Semicond. Phys., Quant. Electron. & Optoelectron. 5: 284-287. doi:10.15407/spqeo5.03.284
    34. Messaddeq S H, Boily O, Santagneli S H, El-Amraoui M and Messaddeq Y, 2016. As4S4 role on the photoinduced birefringence of silver-doped chalcogenide thin films. Opt. Mater. 6:1452-1463doi:10.1364/OME.6.001451
    35. Wagner T, Perina V, Mackova A, Rauhala E, Seppala A, Vlček Mir, Karap S O, Vlček Mil and Frumar M, 2001. The tailoring of the composition of Ag-As-S amorphous films using photo-induced solid state reaction between Ag and As30S70 films. Solid State Ionics. 141-142: 387-395. doi:10.1016/S0167-2738(01)00801-3
    36. Kovanda V, Vlček Mir and Jain H, 2003. Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy. J. Non-Cryst. Sol. 326-327: 88-92. doi:10.1016/S0022-3093(03)00383-1
    Обговорено еволюцію спектрів комбінаційного розсіяння для склоподібних шарів халькогенідів As40S60-xSex (x = 0, 20, 30, 40 і 60 ат. %), яка відбувається при термічному відпалі та опроміненні світлом різних довжин хвиль. Показано, що композиційні залежності спектральних інтенсивностей комбінаційного розсіяння узгоджуються з існуванням «змішаних» пірамід As2S3-xSex. Виявлено, що зміни в спектрах комбінаційного розсіяння пов'язані з термо- та фотоіндукованою полімеризацією молекулярних фрагментів змішаних структурних клітинок типу As4S(Se)4 і кілець або ланцюгів S(Se).

    Ключові слова: потрійні халькогенідні As–S–Se скла, тонкі плівки, фотоіндуковані зміни, Раманівські спектри.

© Ukrainian Journal of Physical Optics ©