Ukrainian Journal of Physical Optics
2022, Volume 23, Issue 3
Structural changes in As40S60-xSex thin films due to annealing and irradiation: Raman spectroscopy studies
1Voynarovych I., 2Hopko M., 2Edinak O., 1,2Gomonnai A. V.
1Institute of Electron Physics, Ukrainian National Academy of Sciences, 21 Universytetska Street, 88017 Uzhhorod, Ukraine; e-mail: voynar@ukr.net;
2Uzhhorod National University, 46 Pidhirna Street, 88000 Uzhhorod, Ukraine
Ukr. J. Phys. Opt.
Vol. 23 ,
Issue 3 , pp. 133 - 141 (2022).
doi: 10.3116/16091833/23/3/133/2022
ABSTRACT
Keywords: ternary chalcogenide As–S–Se glasses, thin films, photo-induced changes, Raman spectra
UDC: 535.4
- Kolobov A and Tominaga J. Chalcogenides: metastability and phase change phenomena. Berlin: Springer, 2012. doi:10.1007/978-3-642-28705-3
- Yannopoulos S. Photo-plastic effects in chalcogenide glasses: Raman scattering studies. In: Kolobov A (Ed.), Photo-Induced Metastability in Amorphous Semiconductors. Weinheim: Wiley-VCH, 2003.
- Frumar M, Frumarová B, Wágner T and Nĕmec P. Photo-induced phenomena in amorphous and glassy chalcogenides. In: Kolobov A V (Ed.), Photo-Induced Metastability in Amorphous Semiconductors. Weinheim: Wiley-VCH, 2003.
- Wang F and Boolchand P. Photostructural transformations and global connectedness of network glasses. In: Lucovsky G and Popescu M (Eds.), Non-Crystalline Materials for Optoelectronics. Bucharest: INOE, 2004.
- Tanaka K and Shimakawa K. Amorphous chalcogenide semiconductors and related materials. Berlin: Springer, 2011. doi:10.1007/978-1-4419-9510-0
- Shpotyuk O, 1995. Amorphous chalcogenide semiconductors for dosimetry of high-energy ionizing radiation. Rad. Phys. Chem. 46: 1279-1282. doi:10.1016/0969-806X(95)00369-9
- Wutting M and Yamada N, 2007. Phase-change materials for rewriteable data storage. Nature Mater. 6: 824-832. doi:10.1038/nmat2009
- Laniel J M, Ho N, Vallee R and Villeneuve A J, 2005. Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation. J. Opt. Soc. Amer. B. 22: 437-445. doi:10.1364/JOSAB.22.000437
- Toupin P, Brilland L, Renversez G and Troles J, 2013. All-solid all-chalcogenide microstructured optical fiber. Opt. Express. 21: 14643-14648. doi:10.1364/OE.21.014643
- Ahmad R, Rochette M and Baker Ch, 2011. Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires. Opt. Lett. 36: 2886-2888. doi:10.1364/OL.36.002886
- Azhniuk Y M, Dzhagan V M, Solonenko D, Mukherjee A, Loya V Y, Grytsyshche I V, Lopushansky V V, Gomonnai A V and Zahn D R T, 2019. Laser annealing-induced formation of CdS nanocrystals in Cd-doped amorphous As2S3 thin films. Phys. Stat. Sol. B. 256: 1800298. doi:10.1002/pssb.201800298
- Azhniuk Y M, Solonenko D, Loya V Y, Kryshenik V M, Lopushansky V V, Mukherjee A, Gomonnai A V and Zahn D R T, 2019. Flexoelectric and local heating effects on CdSe nanocrystals in amorphous As2Se3 films. Mater. Res. Express. 6: 095913. doi:10.1088/2053-1591/ab3241
- Azhniuk Y M, Solonenko D, Sheremet E, Dzhagan V M, Loya V Y, Grytsyshche I V, Schulze S, Hietschold M, Gomonnai A V and Zahn D R T, 2019. Structural and optical study of Zn doped As2Se3 thin films: Evidence for photoinduced formation of ZnSe nanocrystallites. AIP Adv. 9: 065212. doi:10.1063/1.5086974
- Azhniuk Y, Dzhagan V, Solonenko D, Loya V, Grytsyshche I, Lopushansky V V, Gomonnai A V and Zahn D R T, 2019. In-doped As2Se3 thin films studied by Raman and X-ray photoelectron spectroscopies. Appl. Surf. Sci. 471: 943-949. doi:10.1016/j.apsusc.2018.12.097
- Azhniuk Y M, Stoyka V, Petryshynets I, Rubish V M, Guranich O G, Gomonnai A V, Zahn D R T, 2012. SbSI nanocrystal formation in As-Sb-S-I glass under laser beam. Mater. Res. Bull. 47: 1520-1522. doi:10.1016/j.materresbull.2012.02.036
- Kozdras A, Golovchak R, Shpotyuk O and Szymura S, 2011. Light-assisted physical aging in chalcogenide glasses: Dependence on the wavelength of incident photons. J. Mater. Res. 26: 2420-2427. doi:10.1557/jmr.2011.264
- Voynarovych I, Buzek J, Palka K and Vlček M, 2016. Spectral dependence of photoinduced optical effects in As40S60-xSex thin films. Thin Sol. Films. 608: 8-15. doi:10.1016/j.tsf.2016.04.013
- Wojdyr M, 2010. Fityk: a general-purpose peak fitting program. J. Appl. Cryst. 43: 1126-1128. doi:10.1107/S0021889810030499
- Solin S A and Papatheodorou G N, 1977. Irreversible thermostructural transformations in amorphous As2S3 films: a light-scattering study. Phys. Rev. B. 15: 2084-2090. doi:10.1103/PhysRevB.15.2084
- Shpotyuk O I, Kasperczyk J and Kityk I V, 1997. Mechanism of reversible photoinduced optical effects in amorphous As2S3. J. Non-Cryst. Sol. 215: 218-225. doi:10.1016/S0022-3093(97)00058-6
- Nemanich R J, Connel G A N, Hayers T M and Street R A, 1978. Thermally induced effects in evaporated chalcogenide films. Phys. Rev. B. 18: 6900-6914. doi:10.1103/PhysRevB.18.6900
- Shpotyuk O I, 2003. On the microstructural origin of reversible photo-induced transformations in amorphous As2Se3. Opto-Electron. Rev. 11: 19-25.
- Frumar M, Polák Z and Černošek Z, 1999. Raman spectra and photostructural changes in the short-range order of amorphous As-S chalcogenides. J. Non-Cryst Sol. 256&257: 105-110. doi:10.1016/S0022-3093(99)00454-8
- Wagner T, Kasap S O, Vlček M, Sklenar A and Stronski A V, 1998. The structure of AsxS100-x glasses studied by modulated temperature differential scanning calorimetry and Raman spectroscopy. J. Non-Cryst. Sol. 227-230: 752-756. doi:10.1016/S0022-3093(98)00194-X
- Golovchak R, Shpotyuk O, McCloy J S, Riley B J, Windisch C F, Sundaram S R, Kovalskiy A and Jain H, 2010. Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS. Phil. Mag. 90: 4489-4501. doi:10.1080/14786435.2010.510455
- Liska M, Chromcikova M, Holubova Y and Cernosek Z, 2014. Thermodynamic model and structure of As2S3-As2Se3 glasses based on the MCR analysis of Raman spectra. Ceramics. 58: 95-98.
- Tanaka K, 1980. Optical properties and photoinduced changes in amorphous As-S films. Thin Sol. Films. 66: 271-279. doi:10.1016/0040-6090(80)90381-8
- Freitas J A, Strom U and Treacy D J, 1983. Raman scattering of the mixed chalcogenide glass system As2SxSe3-x. J. Non-Cryst. Solids. 59&60: 875-878. doi:10.1016/0022-3093(83)90309-5
- Stronski A V, Vlček M and Olesenko P F, 2001. Fourier Raman spectroscopy studies of the As40S60-xSex glasses. Semicond. Phys., Quant. Electron. & Optoelectron. 4: 210-213. doi:10.15407/spqeo4.03.210
- Chang I F and Mitra S S, 1968. Application of a modified random-element-isodisplacement model to long-wavelength optic phonons of mixed crystals. Phys. Rev. 172: 924-933. doi:10.1103/PhysRev.172.924
- Iovu M S, Kamitsos E I, Varsamis C P E, Boolchand P and Popescu M, 2005. Raman spectra of AsxSe100-x and As40Se60 glasses doped with metals. Chalcogenide Lett. 2: 21-26
- Li W, Seal S, Rivero C, Lopez C, Richardson K, Pope A, Schulte A, Myneni S, Jain H, Antoine K and Miller A C, 2005. Role of S/Se ratio in chemical bonding of As-S-Se glasses investigated by Raman, X- ray photoelectron, and extended X-ray absorption fine structure spectroscopies. J. Appl. Phys. 98: 053503. doi:10.1063/1.2009815
- Stronski A V, Vlček M, Kostyukevych S A, Tomchuk V M and Kostyukevych E V, 2002. Study of non-reversible photostructural transformations in As40S60-xSex layers applied for fabrication of holographic protective elements. Semicond. Phys., Quant. Electron. & Optoelectron. 5: 284-287. doi:10.15407/spqeo5.03.284
- Messaddeq S H, Boily O, Santagneli S H, El-Amraoui M and Messaddeq Y, 2016. As4S4 role on the photoinduced birefringence of silver-doped chalcogenide thin films. Opt. Mater. 6:1452-1463doi:10.1364/OME.6.001451
- Wagner T, Perina V, Mackova A, Rauhala E, Seppala A, Vlček Mir, Karap S O, Vlček Mil and Frumar M, 2001. The tailoring of the composition of Ag-As-S amorphous films using photo-induced solid state reaction between Ag and As30S70 films. Solid State Ionics. 141-142: 387-395. doi:10.1016/S0167-2738(01)00801-3
- Kovanda V, Vlček Mir and Jain H, 2003. Structure of As-Se and As-P-Se glasses studied by Raman spectroscopy. J. Non-Cryst. Sol. 326-327: 88-92. doi:10.1016/S0022-3093(03)00383-1
-
Обговорено еволюцію спектрів комбінаційного розсіяння для склоподібних шарів халькогенідів As40S60-xSex (x = 0, 20, 30, 40 і 60 ат. %), яка відбувається при термічному відпалі та опроміненні світлом різних довжин хвиль. Показано, що композиційні залежності спектральних інтенсивностей комбінаційного розсіяння узгоджуються з існуванням «змішаних» пірамід As2S3-xSex. Виявлено, що зміни в спектрах комбінаційного розсіяння пов'язані з термо- та фотоіндукованою полімеризацією молекулярних фрагментів змішаних структурних клітинок типу As4S(Se)4 і кілець або ланцюгів S(Se).
Ключові слова: потрійні халькогенідні As–S–Se скла, тонкі плівки, фотоіндуковані зміни, Раманівські спектри.
© Ukrainian Journal of Physical Optics ©