Ukrainian Journal of Physical Optics


2022, Volume 23, Issue 2


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Optical pseudogap of Ag7(Si1–xGex)S5I solid solutions

Pogodin A. I., Malakhovska T. O., Filep M. J., Kokhan O. P., Shender I. O., Studenyak Y. I., Zhukova Y. P.

Uzhhorod National University, 46 Pidhirna Street, 88000 Uzhhorod, Ukraine

ABSTRACT

Ag7(Si1–xGex)S5 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid solutions are obtained in the form of micro-crystalline powders by grinding the substance in agate mortar. Diffuse optical reflectance spectra of Ag7(Si1–xGex)S5 are studied at 293 K in the spectral range 220–1350 nm. They are analyzed using a Kubelka–Munk function. It is shown that increasing Si content in the solid solutions shifts the absorption edge towards higher photon energies. The optical pseudogap is estimated by a known Tauc method. It is demonstrated that the cationic substitution Si+4 → Ge+4 inside anionic sublattice decreases monotonically the optical pseudogap such that the corresponding compositional dependence is close to linear one.


Keywords:
argyrodites, optical properties, diffuse reflection, solid solutions

UDC: 535.3

    1. Kuhs W F, Nitsche R and Scheunemann K, 1976. Vapour growth and lattice data of new compounds with icosahedral structure of the type Cu6PS5Hal (Hal = Cl, Br, I). Mater. Res. 11: 1115-1124. doi:10.1016/0025-5408(76)90010-6
    2. Kuhs W F, Nitsche R and Scheunemann K, 1978. The crystal structure of Cu6PS5Br, a new superionic conductor. Acta Cryst. 34: 64-70. doi:10.1107/S0567740878002307
    3. Kuhs W F, Nitsche R and Scheunemann K, 1979. The argyrodites - a new family of the tetrahedrally close-packed structures. Mater. Res. Bull. 14: 241-248. doi:10.1016/0025-5408(79)90125-9
    4. Studenyak I P, Pogodin A I, Filep M J, Symkanych O I, Babuka T Y, Kokhan O P and Kúš P, 2021. Influence of heterovalent cationic substitution on electrical properties of Ag6+x(P1−xGex)S5I solid solutions. J. Alloy. Comp. 873: 159784. doi:10.1016/j.jallcom.2021.159784
    5. Pogodin A I, Shender I O, Bereznyuk S M, Filep M Y, Kokhan O P, Suslikov L M and Studenyak I P, 2021. Structure and electrical properties of superionic ceramics based on silver-enriched (Cu0.25Ag0.75)7SiS5I solid solution. Ukr. J. Phys. 66: 489-489. doi:10.15407/ujpe66.6.489
    6. Studenyak I P, Pogodin A I, Shender I A, Filep M J, Kokhan O P and Kopčanský P, 2021. Electrical properties of cation-substituted Ag7(Si1-xGex)S5I single crystals. Semiconductor Physics, Quant. Electron. & Optoelectron. 24: 241-247. doi:10.15407/spqeo24.03.241
    7. Studenyak I P, Kranjčec M and Kurik M V. Optics of disordered matter. Uzhhorod: Hoverla, 2008.
    8. Pankove J I. Optical Processes in Semiconductors. New Jersey: Prentice-Hall, 1971.
    9. Nowak M, Kauch B and Szperlich P, 2009. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 80: 046107. doi:10.1063/1.3103603
    10. Philips-Invernizzi B, Dupont D and Caze C, 2001. Bibliographical review for reflectance of diffusing media. Opt. Eng. 40: 1082. doi:10.1117/1.1370387
    11. Nowak M, Szperlich P, Bober Ł, Szala J, Moskal G and Stróż D, 2008. Sonochemical preparation of SbSI gel. Ultrason. Sonochem. 15: 709-716. doi:10.1016/j.ultsonch.2007.09.003
    12. Pogodin A I, Filep M J, Kokhan O P, Malakhovska T A, Shender I A and Studenyak I P, 2021. Peculiarities of single crystal growth of solid solution in systems Ag6PS5I-Ag7GeS5I and Ag7SiS5I-Ag7GeS5I. Scientific Bulletin of the Uzhhorod University, Series "Chemistry". 45: 29-34. doi:10.24144/2414-0260.2021.1.29-34
    13. Pogodin A I, Filep M J, Shender I O, Kokhan O P and Studenyak I P, 2021. Interaction in the Ag6PS5I-Ag7GeS5I and Ag7SiS5I-Ag7GeS5I systems. Scientific Bulletin of the Uzhhorod University, Series "Chemistry". 45: 42-46. doi:10.24144/2414-0260.2021.1.42-46
    14. Kranjčec M, Studenyak I P, Bilanchuk V V, Dyordyaj V S and Panko V V, 2004. Compositional behaviour of Urbach absorption edge and exciton-phonon interaction parameters in Cu6PS5I1-xBrx superionic mixed crystals. J. Phys. Chem. Sol. 65: 1015-1020. doi:10.1016/j.jpcs.2003.10.061
    15. Shevchuk V N, Belyukh V М, Popovych D І and Usatenko Yu N, 2011. Influence of d-ions on diffuse reflectance spectra of TiO2 nanopowders. Phys. Chem. Solid State. 12: 95-100.
    16. Pop M, Studenyak V, Pogodin A, Kokhan O, Suslikov L, Studenyak I and Kúš P, 2021. Optical properties of cation-substituted (Cu1-xAgx)7GeSe5I mixed crystals. Ukr. J. Phys. 66: 406-406. doi:10.15407/ujpe66.5.406
    17. Jahan F, Islam M H and Smith B E, 1995. Band gap and refractive index determination of Mo-black coatings using several techniques. Sol. Energy Mater. Sol. Cells. 37: 283-293. doi:10.1016/0927-0248(95)00021-6
    18. Zhou F, Kang K, Maxisch T, Ceder G and Morgan D, 2004. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 132: 181-186. doi:10.1016/j.ssc.2004.07.055
    19. Patschke R, Zhang X, Singh D, Schindler J, Kannewurf C R, Lowhorn N, Tritt T, Nolas G S and Kanatzidis M G, 2001. Thermoelectric properties and electronic structure of the cage compounds A2BaCu8Te10 (A = K, Rb, Cs): systems with low thermal conductivity. Chem. Mater. 13: 613-621. doi:10.1021/cm000390o
    20. Martinez-Castanon G A, Sanchez-Loredo M G, Dorantes H J, Martinez-Mendoza J R, Ortega-Zarzosa G and Ruiz F, 2005. Characterization of silver sulfide nanoparticles synthesized by a simple precipitation method. Mater. Lett. 59: 529-534. doi:10.1016/j.matlet.2004.10.043
    21. Escobedo Morales A, Sanches Mora E and Pal U, 2007. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. S53: 18-22.
    22. Raymond O, Villavicencio H, Petranovskii V and Siqueiros J M, 2003. Growth and characterization of ZnS and ZnCdS nanoclusters in mordenite zeolite host. Mater. Sci. Eng. A. 360: 202-206. doi:10.1016/S0921-5093(03)00463-5
    23. Kubelka P, 1948. New contributions to the optics of intensely light-scattering materials. Part I. J. Opt. Soc. Amer. 38: 448-457. doi:10.1364/JOSA.38.000448
    24. Landi S, Segundo I R, Freitas E, Vasilevskiy M, Carneiro J and Tavares C J, 2022. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 341: 114573. doi:10.1016/j.ssc.2021.114573
    25. Gesesse G D, Gomis-Berenguer A, Barthe M F and Ania C O, 2020. On the analysis of diffuse reflectance measurements to estimate the optical properties of amorphous porous carbons and semiconductor/carbon catalysts. J. Photochem. Photobiol. A: Chemistry. 398: 112622. doi:10.1016/j.jphotochem.2020.112622
    26. Singh S D, Nandanwar V, Srivastava H, Yadav A K, Bhakar A, Sagdeo P R and Ganguli T, 2015. Determination of the optical gap bowing parameter for ternary Ni1−xZnxO cubic rocksalt solid solutions. Dalton Transact. 44: 14793-14798. doi:10.1039/C5DT02283E
    27. Murphy L R, Meek T L, Allred A L and Allen L C, 2000. Evaluation and test of Pauling's electronegativity scale. J. Phys. Chem. A. 104: 5867-5871. doi:10.1021/jp000288e
    Одержано тверді розчини Ag7(Si1–xGex)S5 (x = 0, 0,2, 0,4, 0,6, 0,8 і 1,0) у вигляді мікрокристалічних порошків шляхом розтирання речовини в агатовій ступці. Досліджено спектри дифузного оптичного відбивання Ag7(Si1–xGex)S5 у діапазоні 220–1350 нм при 293 К. Аналіз цих спектрів виконано за допомогою функції Кубелки–Мунка. Показано, що збільшення вмісту Si у твердих розчинах зміщує край поглинання в бік вищих енергій фотонів. Оцінено оптичну псевдощілину за відомим методом Таука. Показано, що катіонне заміщення Si+4 → Ge+4 всередині аніонної підґратки монотонно зменшує оптичну псевдощілину так, що відповідна композиційна залежність близька до лінійної.

    Ключові слова: аргіродити, оптичні властивості, дифузне відбиття, тверді розчини.

© Ukrainian Journal of Physical Optics ©