Ukrainian Journal of Physical Optics


2022, Volume 23, Issue 2


ISSN 1816-2002 (Online), ISSN 1609-1833 (Print)

Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace–Adomian decomposition

1O. González-Gaxiola, 2,3,4,5Anjan Biswas, 6Yakup Yildirim, 3Hashim M. Alshehri

1Applied Mathematics and Systems Department, Universidad Autónoma Metropolitana-Cuajimalpa, Vasco de Quiroga 4871, 05348 Mexico City, Mexico
2Department of Physics, Chemistry and Mathematics, Alabama A&M University, Normal, AL 35762–4900, USA
3Mathematical Modeling and Applied Computation (MMAC) Research Group, Department of Mathematics, King Abdulaziz University, Jeddah–21589, Saudi Arabia
4Department of Applied Sciences, Cross-Border Faculty, Dunarea de Jos University of Galati, 111 Domneasca Street, Galati–800201, Romania
5Department of Mathematics and Applied Mathematics, Sefako Makgatho Health Sciences University, Medunsa–0204, Pretoria, South Africa
6Department of Mathematics, Faculty of Arts and Sciences, Near East University, 99138 Nicosia, Cyprus

ABSTRACT

We study numerically highly dispersive optical solitons in birefringent fibres, which arise from a non-local form of nonlinear refractive index. A Laplace–Adomian decomposition scheme is used as integration algorithm. Both bright and dark solitons are addressed. The error plots obtained by us indicate an extremely appealing error measure.

Keywords: solitons, non-locality, optical fibres, birefringence, Laplace–Adomian decomposition
UDC: 535.32

    1. Yildirim Y, Biswas A, Mehmet E, Zayed E M E, Khan S, Moraru L, Alzahrani A K and Belic M R, 2020. Highly dispersive optical solitons in birefringent fibers with four forms of nonlinear refractive index by three prolific integration schemes. Optik. 220: 165039. doi:10.1016/j.ijleo.2020.165039
    2. Adomian G, 1986. Nonlinear Stochastic Operator Equations. New York: Academic Press.
    3. Adomian G and Rach R, 1986. On the solution of nonlinear differential equations with convolution product nonlinearities. J. Math. Anal. Appl. 114: 171–175. doi:10.1016/0022-247X(86)90074-0
    4. Adomian G, 1994. Solving Frontier Problems of Physics: The Decomposition Method. Boston MA: Kluwer Academic Publishers.
    5. Duan J S, 2011. Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput. 217: 6337–6348. doi:10.1016/j.amc.2011.01.007
    Чисельно досліджено високодисперсні оптичні солітони в двозаломлюючих волокнах, які виникають внаслідок нелокального характеру нелінійного показника заломлення. Як алгоритм інтегрування використано схему декомпозиції Лапласа–Адоміна. Розглянуто і світлі, і темні солітони. Одержані нами графіки для похибок вказують на їхні надзвичайно низькі масштаби.

    Ключові слова: солітони, нелокальність, оптичні волокна, двопроменезаломлення, розклад Лапласа–Адоміна

© Ukrainian Journal of Physical Optics ©