Ukrainian Journal of Physical Optics 

Home page
 
 

Other articles 

in this issue
Efficient materials for spin-to-orbit angular momentum conversion using bending technique

Vasylkiv Yu., Smaga I., Skab I. and Vlokh R.

Download this article

Abstract. We analyze the efficiency of different materials used for spin-to-orbit angular momentum conversion by applying bending to parallelepiped-shaped bars made of crystals or glasses. It is found that generation of pure screw dislocations of the light wave front with the bending technique is possible only in isotropic materials and crystals belonging to hexagonal and trigonal symmetries, with exception of crystals of the point symmetry groups    and 6/m. We demonstrate that lexan is the most efficient material for generating optical vortex beams that bear orbital angular momentum, using the bending technique. This material reveals the highest figure of merit,  =155.1*10-12m2/N.

Keywords: optical vortex, efficiency of SAM-to-OAM conversion, bending

PACS: 42.50.Tx, 42.70.-a, 78.20.hb
UDC: 535.5+535.012+535.55+539.384+517.951.5
Ukr. J. Phys. Opt. 14 200-209
doi: 10.3116/16091833/14/4/200/2013
Received: 10.09.2013

Анотація. У роботі проаналізовано ефективність різних матеріалів, які можна використовувати для спін-орбітального перетворення оптичного кутового моменту за допомогою згину балок у формі паралелепіпеда. Виявлено, що генерація чистої гвинтової дислокації хвильового фронту за методом згину можлива лише в ізотропних матеріалах і кристалах, що належать до гексагональних і тригональних сингоній, за винятком кристалів симетрійних груп   і 6/m. Показано, що лексан – це найефективніший матеріал для генерації оптичних вихорів, які переносять орбітальний кутовий момент, із застосуванням методу згину. Його коефіцієнт якості найвищий і дорівнює  =155.1*10-12m2/N.

REFERENCES
  1. Heckenberg N R, McDuff R, Smith C P and White A G, 1992. Generation of optical phase singu-larities by computer-generated holograms. Opt. Lett. 17: 221–223. doi:10.1364/OL.17.000221 PMid:19784282 
  2. Soskin M S, Polyanskii P V and Arkhelyuk O O, 2004. Computer-synthesized hologram-based rainbow optical vortices. New J. Phys. 6: 196. doi:10.1088/1367-2630/6/1/196
  3. Chen Jun, Kuang Deng-Feng, Gui Min and Fang Zhi-Liang, 2009. Generation of optical vortex using a spiral phase plate fabricated in quartz by direct laser writing and inductively coupled plasma etching. Chinese Phys. Lett. 26: 014202. doi:10.1088/0256-307X/26/1/014202
  4. Izdebskaya Ya, Shvedov V and Volyar A, 2005. Generation of higher-order optical vortices by a dielectric wedge. Opt. Lett. 30: 2472–2474. doi:10.1364/OL.30.002472PMid:16196356 
  5. Marrucci L, 2008. Generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals. Mol. Cryst. Liq. Cryst. 488: 148–162. doi:10.1080/15421400802240524
  6. Slussarenko S, Murauski A, Du T, Chigrinov V, Marrucci L and Santamato E, 2011. Tunable liquid crystal q-plates with arbitrary topological charge. Opt. Express. 19: 4085–4090. doi:10.1364/OE.19.004085 PMid:21369237 
  7. Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L and Santamato E, 2010. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl. Phys. Lett. 97: 241104. doi:10.1063/1.3527083
  8. Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates Appl. Phys. Lett. 94: 231124. doi:10.1063/1.3154549
  9. Skab I, Vasylkiv Yu, Savaryn V and Vlokh R. 2011. Optical anisotropy induced by torsion stresses in LiNbO3 crystals: appearance of an optical vortex. J. Opt. Soc. Amer. A. 28: 633–640. doi:10.1364/JOSAA.28.000633 PMid:21478960 
  10. Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance of singularities of optical fields under torsion of crystals containing threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331 PMid:21734730 
  11. Skab I, Vasylkiv Y and Vlokh R, 2012. Induction of optical vortex in the crystals subjected to bending stresses. Appl.Opt. 51: 5797–5805. doi:10.1364/AO.51.005797PMid:22907006 
  12. Skab I, Vasylkiv Y, Krupych O, Savaryn V and Vlokh R, 2012. Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter. Appl. Opt. 51: 1631–1637. doi:10.1364/AO.51.001631 PMid:22505151 
  13. Krupych O, Vasylkiv Yu, Kvasnyuk O, Skab I and Vlokh R, 2012. Appearance of optical singu-larities at the light propagation through glasses with residual stresses. Ukr. J. Phys. Opt. 13: 170–176. doi:10.3116/16091833/13/4/170/2012
  14. Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Phys. Rev. A. 84: 043815. doi:10.1103/PhysRevA.84.043815
  15. Vasylkiv Yu, Skab I and Vlokh R, 2013. Efficiency of spin-to-orbit conversion in crystals sub-jected to torsion stresses. Ukr. J. Phys. Opt. 14: 50–56. doi:10.3116/16091833/14/1/50/2013
  16. Vasylkiv Yu, Skab I and Vlokh R, 2013. Efficiency of electrooptic spin-to-orbital angular mo-mentum conversion in crystals. Opt. Mat. (available online 13 August 2013).
  17. Sirotin Yu I and Shaskolskaya M P, Fundamentals of crystal physics. Moscow: Nauka (1979).
  18. Shaskolskaya M P, Acoustic crystals. Moscow: Nauka (1982).
  19. Krupych O, Savaryn V, Krupych A, Klymiv I and Vlokh R, 2013. Determination of piezo-optic coefficients of crystals by means of four-point bending. Appl. Opt. 52: 4054–4061. doi:10.1364/AO.52.004054PMid:23759855 
  20. Vedam K, Landolt-Börnstein – Group III Condensed matter, numerical data and functional relationships in science and technology, Ed. by D. F. Nelson, Volume 30A, Piezooptic and electrooptic constants.
  21. Mytsyk B G, Demyanyshyn N M, Andrushchak A S, Kost' Ya P, Parasyuk O V and Kityk A V, 2010. Piezooptical coefficients of La3Ga5SiO14 and CaWO4 crystals: A combined optical interfer-ometry and polarization-optical study. Opt. Mat. 33: 26–30. doi:10.1016/j.optmat.2010.07.013
  22. Baturina О А, Grechushnikov B N, Kaminskiy A A, Konstantinova A F, Markosyan A A, Mill B V and Khodzhabagyan G G, 1987. Crystal-optical study of the compounds with the structure of tetragonal Ca-gallogermanate (Ca3Ga2Ge4O14). Kristallografiya. 32: 406–412.
  23. Meseguer F and Sanchez C, 1980. Piezobirefringence of PMMA: Optical and mechanical relaxa-tions and influence of temperature. J. Mat. Sci. 15: 53–60. doi:10.1007/BF00552426 
  24. Waxler R M, Horowitz D and Feldman A, 1979. Optical and physical parameters of plexiglas 55 and lexan. Appl. Opt. 18: 101–104. doi:10.1364/AO.18.000101PMid:20208668 
  25. Krupych O, Savaryn V, Skab I and Vlokh R, 2011. Interferometric measurements of piezooptic coefficients by means of four-point bending method. Ukr. J. Phys. Opt. 12: 150–159. doi:10.3116/16091833/12/3/150/2011
  26. Weber M J, Handbook of optical materials. Boca Raton, London, New York, Washington: CRC Press (2003).
  27. Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2011. On the spin-to-orbit momentum conversion operated by electric field in optically active Bi12GeO20 crystals. Ukr. J. Phys. Opt. 12: 171–179. doi:10.3116/16091833/12/4/171/2011
(c) Ukrainian Journal of Physical Optics
132946D;A98E4D