Home
page
Other articles
in this issue |
Efficient materials
for spin-to-orbit angular momentum conversion using bending technique
Vasylkiv Yu., Smaga I., Skab I. and Vlokh R.
Download this
article
Abstract. We analyze the efficiency of different materials used
for spin-to-orbit angular momentum conversion by applying bending to parallelepiped-shaped
bars made of crystals or glasses. It is found that generation of pure screw
dislocations of the light wave front with the bending technique is possible
only in isotropic materials and crystals belonging to hexagonal and trigonal
symmetries, with exception of crystals of the point symmetry groups
and 6/m. We demonstrate that lexan is the most efficient material for generating
optical vortex beams that bear orbital angular momentum, using the bending
technique. This material reveals the highest figure of merit,
=155.1*10-12m2/N.
Keywords: optical vortex, efficiency of SAM-to-OAM
conversion, bending
PACS: 42.50.Tx, 42.70.-a, 78.20.hb
UDC: 535.5+535.012+535.55+539.384+517.951.5
Ukr. J. Phys. Opt.
14 200-209
doi: 10.3116/16091833/14/4/200/2013
Received: 10.09.2013
Анотація. У роботі проаналізовано
ефективність різних матеріалів, які можна
використовувати для спін-орбітального
перетворення оптичного кутового моменту
за допомогою згину балок у формі паралелепіпеда.
Виявлено, що генерація чистої гвинтової
дислокації хвильового фронту за методом
згину можлива лише в ізотропних матеріалах
і кристалах, що належать до гексагональних
і тригональних сингоній, за винятком кристалів
симетрійних груп
і 6/m. Показано, що лексан – це найефективніший
матеріал для генерації оптичних вихорів,
які переносять орбітальний кутовий момент,
із застосуванням методу згину. Його коефіцієнт
якості найвищий і дорівнює
=155.1*10-12m2/N. |
|
REFERENCES
-
Heckenberg N R, McDuff R, Smith C P and White A G, 1992. Generation of
optical phase singu-larities by computer-generated holograms. Opt. Lett.
17: 221–223. doi:10.1364/OL.17.000221
PMid:19784282
-
Soskin M S, Polyanskii P V and Arkhelyuk O O, 2004. Computer-synthesized
hologram-based rainbow optical vortices. New J. Phys. 6: 196. doi:10.1088/1367-2630/6/1/196
-
Chen Jun, Kuang Deng-Feng, Gui Min and Fang Zhi-Liang, 2009. Generation
of optical vortex using a spiral phase plate fabricated in quartz by direct
laser writing and inductively coupled plasma etching. Chinese Phys. Lett.
26: 014202. doi:10.1088/0256-307X/26/1/014202
-
Izdebskaya Ya, Shvedov V and Volyar A, 2005. Generation of higher-order
optical vortices by a dielectric wedge. Opt. Lett. 30: 2472–2474. doi:10.1364/OL.30.002472PMid:16196356
-
Marrucci L, 2008. Generation of helical modes of light by spin-to-orbital
angular momentum conversion in inhomogeneous liquid crystals. Mol. Cryst.
Liq. Cryst. 488: 148–162. doi:10.1080/15421400802240524
-
Slussarenko S, Murauski A, Du T, Chigrinov V, Marrucci L and Santamato
E, 2011. Tunable liquid crystal q-plates with arbitrary topological charge.
Opt. Express. 19: 4085–4090. doi:10.1364/OE.19.004085
PMid:21369237
-
Piccirillo B, D'Ambrosio V, Slussarenko S, Marrucci L and Santamato E,
2010. Photon spin-to-orbital angular momentum conversion via an electrically
tunable q-plate. Appl. Phys. Lett. 97: 241104. doi:10.1063/1.3527083
-
Karimi E, Piccirillo B, Nagali E, Marrucci L and Santamato E, 2009. Efficient
generation and sorting of orbital angular momentum eigenmodes of light
by thermally tuned q-plates Appl. Phys. Lett. 94: 231124. doi:10.1063/1.3154549
-
Skab I, Vasylkiv Yu, Savaryn V and Vlokh R. 2011. Optical anisotropy induced
by torsion stresses in LiNbO3 crystals: appearance of an optical vortex.
J. Opt. Soc. Amer. A. 28: 633–640. doi:10.1364/JOSAA.28.000633
PMid:21478960
-
Skab I, Vasylkiv Yu, Zapeka B, Savaryn V and Vlokh R, 2011. Appearance
of singularities of optical fields under torsion of crystals containing
threefold symmetry axes. J. Opt. Soc. Amer. A. 28: 1331–1340. doi:10.1364/JOSAA.28.001331
PMid:21734730
-
Skab I, Vasylkiv Y and Vlokh R, 2012. Induction of optical vortex in the
crystals subjected to bending stresses. Appl.Opt. 51: 5797–5805. doi:10.1364/AO.51.005797PMid:22907006
-
Skab I, Vasylkiv Y, Krupych O, Savaryn V and Vlokh R, 2012. Generation
of doubly charged vortex beam by concentrated loading of glass disks along
their diameter. Appl. Opt. 51: 1631–1637. doi:10.1364/AO.51.001631
PMid:22505151
-
Krupych O, Vasylkiv Yu, Kvasnyuk O, Skab I and Vlokh R, 2012. Appearance
of optical singu-larities at the light propagation through glasses with
residual stresses. Ukr. J. Phys. Opt. 13: 170–176. doi:10.3116/16091833/13/4/170/2012
-
Skab I, Vasylkiv Yu, Smaga I and Vlokh R, 2011. Spin-to-orbital momentum
conversion via electro-optic Pockels effect in crystals. Phys. Rev. A.
84: 043815. doi:10.1103/PhysRevA.84.043815
-
Vasylkiv Yu, Skab I and Vlokh R, 2013. Efficiency of spin-to-orbit conversion
in crystals sub-jected to torsion stresses. Ukr. J. Phys. Opt. 14: 50–56.
doi:10.3116/16091833/14/1/50/2013
-
Vasylkiv Yu, Skab I and Vlokh R, 2013. Efficiency of electrooptic spin-to-orbital
angular mo-mentum conversion in crystals. Opt. Mat. (available online 13
August 2013).
-
Sirotin Yu I and Shaskolskaya M P, Fundamentals of crystal physics. Moscow:
Nauka (1979).
-
Shaskolskaya M P, Acoustic crystals. Moscow: Nauka (1982).
-
Krupych O, Savaryn V, Krupych A, Klymiv I and Vlokh R, 2013. Determination
of piezo-optic coefficients of crystals by means of four-point bending.
Appl. Opt. 52: 4054–4061. doi:10.1364/AO.52.004054PMid:23759855
-
Vedam K, Landolt-Börnstein – Group III Condensed matter, numerical data
and functional relationships in science and technology, Ed. by D. F. Nelson,
Volume 30A, Piezooptic and electrooptic constants.
-
Mytsyk B G, Demyanyshyn N M, Andrushchak A S, Kost' Ya P, Parasyuk O V
and Kityk A V, 2010. Piezooptical coefficients of La3Ga5SiO14 and CaWO4
crystals: A combined optical interfer-ometry and polarization-optical study.
Opt. Mat. 33: 26–30. doi:10.1016/j.optmat.2010.07.013
-
Baturina О А, Grechushnikov B N, Kaminskiy A A, Konstantinova A F, Markosyan
A A, Mill B V and Khodzhabagyan G G, 1987. Crystal-optical study of the
compounds with the structure of tetragonal Ca-gallogermanate (Ca3Ga2Ge4O14).
Kristallografiya. 32: 406–412.
-
Meseguer F and Sanchez C, 1980. Piezobirefringence of PMMA: Optical and
mechanical relaxa-tions and influence of temperature. J. Mat. Sci. 15:
53–60. doi:10.1007/BF00552426
-
Waxler R M, Horowitz D and Feldman A, 1979. Optical and physical parameters
of plexiglas 55 and lexan. Appl. Opt. 18: 101–104. doi:10.1364/AO.18.000101PMid:20208668
-
Krupych O, Savaryn V, Skab I and Vlokh R, 2011. Interferometric measurements
of piezooptic coefficients by means of four-point bending method. Ukr.
J. Phys. Opt. 12: 150–159. doi:10.3116/16091833/12/3/150/2011
-
Weber M J, Handbook of optical materials. Boca Raton, London, New York,
Washington: CRC Press (2003).
-
Vasylkiv Yu, Krupych O, Skab I and Vlokh R, 2011. On the spin-to-orbit
momentum conversion operated by electric field in optically active Bi12GeO20
crystals. Ukr. J. Phys. Opt. 12: 171–179. doi:10.3116/16091833/12/4/171/2011
(c) Ukrainian Journal
of Physical Optics |