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Abstract. We analyze the efficiency of different materials used for spin-to-orbit an-
gular momentum conversion by applying bending to parallelepiped-shaped bars 
made of crystals or glasses. It is found that generation of pure screw dislocations of 
the light wave front with the bending technique is possible only in isotropic materi-
als and crystals belonging to hexagonal and trigonal symmetries, with exception of 
crystals of the point symmetry groups 3, 3 , 6, 6  and 6/m. We demonstrate that 
lexan is the most efficient material for generating optical vortex beams that bear or-
bital angular momentum, using the bending technique. This material reveals the 
highest figure of merit, 12 2155.1 10  m /NM = . 
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1. Introduction 
Optical vortices in the light beams that bear orbital angular momentum can be generated by a 
number of techniques. Usually they are based on computer-synthesized holograms with fork-like 
defects or spiral patterns of gratings [1, 2], spiral phase plates [3], optical wedges [4], q-plates [5, 
6], etc. All of those tools for generating optical vortices, except for the q-plates, represent so-called 
passive techniques. In other words, the efficiency of spin-to-orbit angular momentum (SAM-to-
OAM) conversion cannot be operated by external influences, which represents a serious drawback. 
Only the efficiency of the SAM-to-OAM conversion with the q-plates, which represent liquid 
crystalline matrices with embedded defects in their centres, can be tuned by either temperature or 
electric field [7, 8].  

Recently we have shown that optical vortices can also be generated with the aid of parametric 
optical effects (e.g., piezooptic or Pockels ones) induced by inhomogeneous external fields [9–12]. 
For example, optical polarization singularities are successfully created using torsion of crystals, 
their bending [9–11], or loading of transparent crystalline disks compressed along their diameters 
[12]. It has also been found that optical polarization singularities are imposed by structural disloca-
tions existing in crystals or by residual stresses available in glass materials [13]. Moreover, singu-
larities with the strength of topological defects equal to ½ can be induced by conically shaped elec-
tric field via the Pockels effect [14].  

Keeping all of those new techniques in mind, one can infer that searching for efficient mate-
rials for generation of the optical vortices on the basis of parametric optical effects represents an 
urgent practical problem. In our recent works [15, 16] we have shown that, in what refers the tor-
sion effect, the crystals of LiNbO3,  -BaB2O4 and  - BaB2O4 are the most efficient materials, 
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with their figure of merit being as high as of the order of M ~10–11 m2/N [15]. On the other side, 

Bi12TiO20 crystals are the most efficient while inducing the orbital angular momentum by the elec-
tric field via the Pockels effect [16]. They reveal the highest value of the relevant figure of merit, 

117.8 10 m/VM = . However, the Pockels effect exists only in acentric material media, while 

the torsion-induced optical vortices can be generated only in the crystals belonging to trigonal  
or cubic symmetry groups. These points significantly restrict the number of materials used for  
this aim.  

On the other hand, optical vortices can be generated by bending a bar made of some material 
even with isotropic media, e.g., glasses [11]. Thus, we believe that analysis of efficiency of the 
SAM-to-OAM conversion for different materials subjected to bending is very important. The pre-
sent work is just devoted to this problem.  

2. Conditions for generating canonical vortices under bending of a bar with paral-
lelepiped shape 
As already shown in Ref. [11], the canonical optical vortices can be generated by bending material 
bars under specific geometrical conditions. Let us remind in brief the principal results of the analy-
sis [11]. Generation of a pure screw dislocation of the phase front by bending of bars can be im-
plemented for the two limiting cases: (i) a mechanical load is distributed over all the upper surface 
of a sample (see Fig. 1a), and (ii) a load is distributed over some distance d along the upper surface 
of that sample (see Fig. 1b). 

(a)  (b) 
Fig.1. Schematic representation of mechanical load distributed over the entire upper sample surface 
(a) and over the distance d at that surface (b). The parameter q is defined as 1 /q P l  (see also 
explanations in the text). 

In the both cases we have the condition 1 2   for the stress tensor components, which is 

satisfied at 1/ 10h l  . Here h, b, l and d are geometrical parameters explained in Fig. 1. Let us 
consider the first case illustrated in Fig. 1a. When the light beam propagates along Z axis in an 
isotropic medium (e.g., a glass), one can represent the angle of optical indicatrix rotation and the 
optical birefringence respectively as 
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where on  denotes the ordinary refractive index and 66 44 11 12       the piezooptic coeffi-

cient. Here obvious relations cosX    and sinY    between the polar and Cartesian coor-

dinates can be used, where   is the polar angle and   the module. Under the condition 0  , 

Eq. (1) may be simplified to  
2

2
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h
l

  ,     (3) 

which corresponds to a mixed screw-edge dislocation of the phase front. Considering that 

, 0X Y   at 2l h , one can rewrite Eqs. (1) and (2) as 
3
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and 
tan 2 tanZ   (or / 2Z  ),    (5) 

where 1P  implies the loading force. The above relations testify that the birefringence is distributed 

conically. Therefore a pure screw dislocation of the phase front and a canonical vortex with a unit 

charge should appear. However, the condition 2l h  contradicts the inequality 1/ 10h l   as-
sumed above and so it cannot be realized in practice. 

In the second case when the load is distributed over the distance d ( / 2 / 2d Y d    – see 
Fig. 1b), the optical birefringence and the optical indicatrix rotation angle read as 
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At small enough   values, formula (6) reduces to 
22tan 2 tan

(2 )Z
h

d l d
 


.    (8) 

This dependence of Z  on the tracing angle   corresponds to a so-called elliptical vortex 

appearing due to a mixed screw-edge dislocation of the wave front. Under the condition 
22 / (2 ) 1h d l d   (or 2 22d l l h   )     (9) 

Eq. (8) yields in 
tan 2 tanZ   (or / 2Z  ),     (10) 

i.e. we deal with a pure screw dislocation of the phase front leading to canonical vortex that has a 
unit charge. Under the same conditions, the spatial distribution of the birefringence is given by a 
conical shape: 
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Since the geometrical relation mentioned above can be simply reached, further on we will consider 
only the second case. 

3. Relation for the efficiency of SAM-to-OAM conversion 
Following our recent results [15, 16], one can represent the efficiency of the SAM-to-OAM con-
version as 

out
l
inc
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I
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  ,     (12) 

where inc
rI  and out

lI  are the intensities of respectively the right-handed incident light wave and the 

left-handed outgoing wave that bears OAM.  
Let us write out the relation describing the XY cross section of the Fresnel ellipsoid perturbed 

by the stress tensor components 2  and 6  for the cubic crystals, under the condition that the 

optical beam propagates along the Z axis: 
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where the stress tensor components are given by the relations [11] 
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Then the angle of optical indicatrix rotation reduces to 
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Since the relation 66 44 11 12       holds true for the cubic crystals, the elliptical vortex 

would appear even in the case when Eq. (8) is satisfied. Thus, one has to choose optically uniaxial 
crystalline materials of such point symmetry groups for which the condition 66 11 12     ful-

fils. These groups are as follows: 3, 3 , 32, 3m, 3m , 6, 6 , 6/m, 6m2 , 622, 6mm, and 6/mmm 

[17]. However, the crystals belonging to the symmetry groups 3, 3 , 6, 6  and 6/m manifest a very 
complicated structure of the piezooptic tensor. The consequence is a complicated relation for the 
optical indicatrix, 
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which yields in the following optical indicatrix rotation: 
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One can see that Eq. (17) implies generation of the screw-edge dislocation of the wave front.  
Summarizing all the considerations mentioned above, we conclude that the pure screw dislo-

cation can be generated by the bending technique only in the isotropic materials and the crystals 
that belong to the hexagonal and trigonal symmetries, with exception of crystals belonging to the 
point groups 3, 3 , 6, 6  and 6/m. In these cases only the coefficient 66 11 12     is involved 

into piezooptic interaction.  
Following the results [15, 16], we will obtain the relation needed for calculating the SAM-to-
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OAM conversion efficiency. For this aim we divide the optical beam into k×l=N elementary rays, 

while the intensity of the incoming wave is taken to be unit ( 1inc
rI  ). Then Eq. (12) may be rep-

resented as 

 
1 1

N N
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l klk l
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
.    (18) 

Here the sample is divided into k l  homogeneous elementary cells in the XY plane and, in 
practice, we put k = 30 and l = 30. The size of each square homogeneous elementary cell in the XY 
plane is taken to be equal to 20.032 0.032 mm . Since the beam has a circular cross section rather 

than a square one, the number of square-shaped elementary cells packed in such a cross section 
will be somewhat smaller than 900N  . Suppose now that the light beam propagates through a 
system of mutually orthogonally oriented circular polarizers and a crystalline sample subjected to 
bending and placed in between the polarizers. Then one gets the relation 
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With considering Eq.(7), the phase difference is determined as 
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where 3
66on M  is a parameter that would define the efficiency of the SAM-to-OAM conver-

sion, i.e. a figure of merit.  
Using Eq. (18), one arrives at the following expression for the efficiency of the SAM-to-

OAM conversion: 

2 2 2

22 2
2 2 2 2 2

13
6 (2 )sin 4

4 4

R R

X R Y R

X Y R

d l d hP Y X X Y
h d

N





 

 

              

  M

,   (21) 

where the practical step taken for the X and Y coordinate changes is equal to 0.032 mm, and R is 
the beam radius. Hence, the efficiency of the SAM-to-OAM conversion represents a quantity inte-
grated over the cross section of the wide light beam. As a consequence, the problem of searching 
for materials efficient for the SAM-to-OAM conversion under the action of bending has been re-
duced to searching for crystalline materials of the trigonal and hexagonal symmetries or glass ma-
terials, which reveal the highest figures of merit M . In the presence of natural optical activity 
effect, one should additionally take into account the phase difference caused by the optical rota-
tion. It is the same for all the elementary cells: 2 /oa i obg n   , where ig  is the gyration tensor 

component along the direction of light propagation. 
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4. Estimations of efficiency of the SAM-to-OAM conversion for different materials 
Table 1 presents the piezooptic parameters important for the SAM-to-OAM conversion in some 
crystals and glasses whose optical characteristics are well known. As seen from Table 1, the high-
est figure of merit among the crystalline materials is typical for ZnSe ( 12 229.9 10  m /NM = ). 

Among the inorganic glasses, a fluoro-crown glass FK7 reveals the highest figure of merit. How-
ever, the polymer compounds, in particular lexan, are characterized by still better characteristics. 
The figure of merit for the latter substance is two orders of magnitude higher than that found for 
the other materials. 
 

Table 1. Parameters defining the efficiency of the SAM-to-OAM conversion under bending 
of material bars (at the light wavelength λ = 632.8 nm). 
Point sym-
metry group 

 
Crystal 

Piezooptic coefficient 66 , 

10−12 m2/N; gyration tensor com-
ponent, and references  

Refractive 
index no, 
and refer-
ence 

Figure of 
merit 
M ,  

10–12 m2/N 

P1, N  
corre-
spondding 
to ηmax 

6mm ZnSe 
66 11 12 1.7       [18] ~2.6 [18] 29.9 24 

3m   -Al2O3 66 11 12 0.45      [18] 1.76 [18] 2.45 312 

3m LiNbO3 66 11 12 0.62      [19] 2.286 [18] 7.41 102 

3m LiTaO3 66 11 12 0.96       [20] 2.175 [18] 9.88 78 

32 La3Ga5SiO14 66 11 12 0.29       [21]; 

g3 = 2.2×10–5 [22] 

1.8993 
[21] 

1.99 396 

32 SiO2 66 11 12 1.34       [18]; 
g3 = 12.9×10−5 [18] 

1.542 [18] 4.91 390 

/ /mmm   Polymethyl 
methacrylate 
(PMMA) 

66 44 11 12 2.64        
[23] 

1.49 [23] 8.73 90 

/ /mmm 
 

Plexiglas 55 
66 44 11 12 1.2        [24] 1.4934 

[24] 
4.0 192 

/ /mmm   Lexan 
66 44 11 12 39.2         

[24] 

1.5816 
[24] 

155.1 5 

/ /mmm 
 

Borosilicate 
glass 
BK7 

66 44 11 12 1.59         
[25] 

1.5151 
[26] 

5.53 138 

/ /mmm 
 

Fluoro-
crown glass 
FK7 

66 44 11 12 2.49        
[26] 

1.463 [26] 7.8 96 

 
The calculated dependences of the efficiency of SAM-to-OAM conversion on the loading 

force for different materials are presented in Fig. 2. In our calculations, the following geometric 
parameters have been used: l = 20.3 mm, h = 3.2 mm, b = 5.65 mm, and d = 0.52 mm. As seen 
from Fig. 2, the natural optical activity decreases the efficiency of the SAM-to-OAM conversion 
(see also [27]). This is why the crystals that belong to the symmetry group 32 will hardly be effi-
cient in practical applications. 
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Fig. 2. Calculated dependences of efficiency of the 
SAM-to-OAM conversion on the loading force for dif-
ferent materials (at λ = 632.8 nm).  

 

5. Experimental results 
To verify experimentally the appearance of polarization singularities under bending of bars, we 
have used a BK7 glass with the dimensions mentioned above. The polarimetric setup and the 
working method used for measuring the angle of optical indicatrix rotation and the phase differ-
ence have been described elsewhere [9]. 
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 (b) 
Fig. 3. Spatial distributions of the phase difference (a) and the angle of optical indicatrix rotation (b) obtained 
experimentally under bending of a bar made of BK7 glass (the loading force P1 = 5.1 N and 632.8 nm  ). 

As seen from Fig. 3, the phase difference acquires a zero value approximately in the centre of 
the XY cross section of our sample. The angle of optical indicatrix rotation at the same point 
reaches a singular (i.e., indefinite) value. If the tracing angle   changes by 360 deg, the change in 
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the angle of optical indicatrix rotation is equal to 180 deg. This corresponds to the strength ½ of 
the topological defect, i.e. to generation of the singly charged optical vortex in case if the sample is 
placed in between the orthogonal circular polarizers. However, the linear dependence ( )   is 

typical only for the distances less than 0.2 mm (see Fig. 4). In other words, while generating the 
canonical vortex, the beam radius should be smaller than ~ 0.2 mm. Fig. 5 presents the spatial dis-
tribution of the intensity of outgoing optical beam bearing the optical vortex, which has been simu-
lated for the particular case of the bended BK7 glass. 

-20 0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

, deg

 deg

 
Fig. 4. Experimental dependences of angle of the optical indicatrix rotation on the tracing angle for differ-
ent   values: open circles –   =1.05, full circles – 0.79, open triangles – 0.63, full triangles – 0.52, 
open squares – 0.42, full squares – 0.26, and stars – 0.20 mm. 
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Fig. 5. Simulated spatial distribution of intensity in the outgoing optical beam bearing the optical vortex for the 
case of bending of the BK7 glass under the loading force P1 = 138 N. 

6. Conclusions 
In the present work we have analyzed different materials utilized for optical vortex generation, 
using a known technique of bending of parallelepiped-shaped material bars. It has been shown that 
generation of the pure screw dislocation by the bending method is possible only with the isotropic 
materials and the crystals belonging to the hexagonal and trigonal systems, except for the crystals 
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of the symmetry groups 3, 3 , 6, 6 , and 6/m. The analytical relation for the figure of merit de-
scribing the SAM-to-OAM conversion has been derived. We have demonstrated that the most effi-
cient materials for generating optical vortex beams that bear the OAM are as follows: (i) the ZnSe 
crystals among crystalline materials (the figure of merit 12 229.9 10  m /NM = ); (ii) the fluoro-

crown glass FK7 among inorganic glasses ( 12 27.8 10  m /NM = ); and (iii) the lexan among 

polymer isotropic materials, with the highest figure of merit equal to 12 2155.1 10  m /NM = . 

The appearance of the optical polarization singularity under bending of the bar made of the BK7 
glass has been proved experimentally. 
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Анотація. У роботі проаналізовано ефективність різних матеріалів, які можна викори-
стовувати для спін-орбітального перетворення оптичного кутового моменту за допомо-
гою згину балок у формі паралелепіпеда. Виявлено, що генерація чистої гвинтової 
дислокації хвильового фронту за методом згину можлива лише в ізотропних матеріалах і 
кристалах, що належать до гексагональних і тригональних сингоній, за винятком 
кристалів симетрійних груп 3, 3 , 6, 6  і 6/m. Показано, що лексан – це найефективніший 
матеріал для генерації оптичних вихорів, які переносять орбітальний кутовий момент, із 
застосуванням методу згину. Його коефіцієнт якості найвищий і дорівнює 

12 2155,1 10  м /НM = . 


