Home
page
Other articles
in this issue |
Fifth-rank axial
tensor describing the gradient piezogyration effect
Vasylkiv Yu., Kvasnyuk O., Zapeka B. and Vlokh
R.
Download this
article
Abstract. We have derived a fifth-rank axial tensor with the
internal symmetry e[V2]2V
that describes the gradient piezogyration effect for all the point symmetry
groups, including continuous-symmetry groups. It has been found that twelve
different structures of such a tensor can be distinguished. The gradient
piezogyration effect is analyzed for the cases of torsion and bending of
crystals and crystalline textures.
Keywords: optical activity, gradient piezogyration,
fifth-rank tensor
PACS: 78.20.Ek, 78.20.hb, 45.20.da, 31.15.xh
UDC: 535.56+535.012+53.082.12+535.55+512.647.7
Ukr. J. Phys. Opt.
14 129-134
doi: 10.3116/16091833/14/3/129/2013
Received: 31.05.2013
Анотація. Ми отримали матриці аксіального
тензора п’ятого рангу із внутрішньою симетрією
e[V2]2V , що описує
градієнтний п’єзогіраційний ефект для
всіх точкових груп симетрії та граничних
груп симетрії Кюрі. Встановлено, що існує
дванадцять різних структур такого тензора.
Градієнтну п’єзогірацію проаналізовано
для випадків кручення та згину кристалів
і текстур |
|
REFERENCES
-
Vlokh R O, Pyatak Y A and Skab I P, 1989. Torsion-gyration effect. Ukr.
Fiz. Zhurn. 34: 845–846.
-
Vlokh R, Kostyrko M and Skab I, 1998. Principle and application of crystallooptical
effects induced by inhomogeneous deformation. Jap. J. Appl. Phys. 37: 5418–5420.
doi:10.1143/JJAP.37.5418
-
Vasylkiv Yu, Kvasnyuk O, Shopa Ya and Vlokh R, 2013. Optical activity caused
by torsion stresses. The case of NaBi(MoO4)2 crystals. J. Opt. Soc. Am.
A 30: 891–897. doi:10.1364/JOSAA.30.000891
PMid:23695320
-
Kvasnyuk O, Zapeka B, Vasylkiv Yu, Kostyrko M and Vlokh R, 2013. Symmetry
conditions for studying torsion stress-induced gradient piezogyration.
Ukr. J. Phys. Opt. 14: 91–95. doi:10.3116/16091833/14/2/91/2013
-
Aizu K, 1964. Ferroelectric transformations of tensorial properties in
regular ferroelectrics. Phys. Rev. 133: A1350–A1359. doi:10.1103/PhysRev.133.A1350
-
Vlokh O G and Krushel'nitskaya T D, 1970. Axial fourth-rank tensors and
quaratic electro-gyration. Kristallografiya. 15: 587–589.
-
Lvov V S, 1967. Optical activity of deformed crystals. Fiz. Tverd. Tela.
9: 1273–1275.
-
Weber H J and Haussuhl S, 1979. Electrogyration and piezogyration in NaClO3.
Acta Cryst. A. 35: 225–232. doi:10.1107/S0567739479000383
-
Sirotin Yu I and Shaskolskaya M P. Fundamentals of crystal physics. Moscow:
Nauka (1975).
-
Fumi F G, 1952. Physical properties of crystals: the direct-inspection
method. Acta Cryst. 5: 44–48.doi:10.1107/S0365110X52000113
-
Bhagavantan S and Suryanarayana D, 1949. Crystal symmetry and physical
properties: Appliction of the group theory. Acta Cryst. 2: 21–26. doi:10.1107/S0365110X49000047
-
Vlokh R O, Kostyrko M E and Skab I P, 1997. Description of gradients of
piezo-gyration and piezo-optics caused by twisting and bending. Crystallogr.
Rep. 42: 1011–1013.
(c) Ukrainian Journal
of Physical Optics |