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Abstract. We have derived a fifth-rank axial tensor with the internal symmetry
&[V?T'V that describes the gradient piezogyration effect for all the point symmetry

groups, including continuous-symmetry groups. It has been found that twelve
different structures of such a tensor can be distinguished. The gradient piezogyration
effect is analyzed for the cases of torsion and bending of crystals and crystalline
textures.
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1. Introduction

Recently we have shown [1-4] that mechanical torsion can induce an optical rotation in crystals
possessing no natural optical activity or a common piezogyration effect [5—8]. This phenomenon
described as a gradient piezogyration effect is caused by a spatial gradient of mechanical stresses
rather than the stresses themselves. The tensorial relation describing the gradient piezogyration
effect is as follows:

Agln = ﬂlnkmvao—km /aXv > (1)

where Ag, denotes the induced increment of the gyration tensor, Joy,, /0X, the coordinate
derivative of the stress tensor, and f,,,, a fifth-rank axial tensor. Further on we will use a

standard matrix notation explained in detail, e.g., in the textbook [9]. Namely, we have
ﬁ,nkmv:ﬂ,lw when IneoA=1..,6, kmep=12,3 and ﬁlnkmv:2ﬁ,wv when

IneoA=1,..,6 k,m < u=4,506. Notice that the fifth-rank axial tensor remains nonzero in the

material media including second-order symmetry operations such as a centre of symmetry, mirror
planes or inversion axes. Therefore the effect mentioned above is not forbidden even in
centrosymmetric media.

In our recent work [4] we have analyzed manifestations of the gradient piezogyration effect
under condition when an inhomogeneous stress field is caused by a torsion moment applied to
crystals not possessing the natural optical activity. Nonetheless, one can notice that the torsion-
induced optical activity (see, e.g., the study [3] where it has been verified experimentally)
represents, maybe, the simplest case of the gradient piezogyration. It is obvious that the optical
rotation can be produced by different kinds of coordinate dependences of the stress tensor
components. In order to analyze in detail the effect, one needs to know in advance the forms of the
fifth-rank axial tensor for all the point symmetry groups, including the infinite-order Curie groups.

As far as we know, the tensor with the internal symmetry €[V>]*V has not been derived before.
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Therefore the present work is aimed at obtaining the structure of this tensor for different point
symmetry groups.

2. Fifth-rank axial tensor for different point groups
To derive the tensor with the internal symmetry &[V>]’V for most of the point groups, it is

sufficient to use a method by F. G. Fumi (a so-called method of direct inspection) [10]. While
deriving the tensor for the trigonal and hexagonal systems, as well as for the Curie groups (i.e.,
those including rotation axes of infinite order), one has to apply a method of cyclic coordinates [9].
Finally, the number of independent components in the tensor has been checked using a group-
theoretical technique (see Refs. [9, 11]).

Employing the techniques mentioned, we have obtained 12 different structures of the tensor
for different symmetry systems. The latter systems are such that they include the following

symmetry groups: (1) oo/oo/mmm and c0/c02; (2) m3m, 432 and 43m; (3) m3 and 23; (4)
co/mmm, comm , 02, 6/mmm, 622, 6mm and 6m?2 ; (5) ©/m, », 6/m, 6 and 6 (6) 4/mmm,
422, 4mm and 42m; (7) 4/m, 4 and 4; (8) 32, 3m and 3m; (9) 3 and 3; (10) mmm, 222 and
mm2; (11) 2/m, 2 and m; and (12) 1 and 1. The corresponding matrices of the tensor written in
the principal coordinate system associated with the optical Fresnel ellipsoid are represented in
Tables 1-12.

Table 1. Structure of tensor with the internal symmetry €[V>]*V for the groups o0 /oo/mmm and 0o/ o02 .

A

doy 0o, 0oy 0oy Oos Oog 0oy 0o, 0oy 0o, Oos 0Oog 0oy 0o, 0oy 0oy Oos 0og

ax, ox, oXx, oX, oX, oX, X, oX, 0X, 0X, 0X, X, 0X; 0X; 0X; 0X; OX; oX,

|
Ag 0 0 0 0 0 0 0 0 0 0 —Pisy 0 0 0 0 0 0 Bisa
Ag, 0 0 0 Pisz 0 0 0 0 0 0 0 0 0 0 0 0 0 —Biso
Agy 0 0 0 —Pisa 0 0 0 0 0 0 Bisa 0 0 0 0 0 0 0
Agy | 0 —Pisy Pisn O 0 0 0 0 0 0 0 Bs, O 0 0 0 B O
Ags | 0 0 0 0 0 —Bis2 Bsa 0 =Pz O 0 0 0 0 0 B O 0
Ags | O 0 0 0 Pz O 0 0 0 -Bsx O 0 —Bsx B2 0 0 0 0

As seen from Table 1, the tensor with the internal symmetry [V>]*V is nonzero even for the
isotropic media. Here it includes a single independent component f;s,. As already mentioned in

the work [4], the torsion-induced optical activity has to appear in these media if the light
propagates along the torsion axis. On the other hand, the stress-component gradients 0o, /0X; (or
0oy /0X;) appearing, e.g., under bending would induce the only gyration tensor component g, .
The latter can be measured under very inconvenient experimental conditions: the light beam
should be incident oblique with respect to a surface of sample of a rectangular shape, with the
surfaces being perpendicular to the coordinate axes. The same is true for all of the derivatives

0o, /10X, , where p,v=1,2,3. This is also the property for the symmetry groups co/mmm,

comm , 02, m3m, 432, 43m, m3, 23, 6/mmm, 622, 6mm, 6m2 , 4/mmm, 422, 4mm, and 42m.
In other words, the torsion applied around the principal axes would lead to appearance of the
optical rotation along the direction of torsion axis, while the bending would not (see Tables 2, 3, 4
and 6).

Nonetheless, the bending stresses do,, /0X3 (u =1,2) applied to materials belonging to the

symmetry groups co/m, o, 6/m, 6, 6, 4/m, 4 and 4, would induce the optical activity along all
of the principal axes (see Tables 5 and 7).
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Table 2. Structure of tensor with the internal symmetry €[V>]*V for the groups m3m, 432 and 43m.

00, 0o, S0y doy 0oy 8o, 8o, 0oy oy doy 0oy 0oy doy 0oy oy doy doy dog

ax, X, oXx, X, @&X, o&X, oX, 0X, oX, X, X, 08X, oX; 0X; Xy 0X; 0X;  0X;
Agil 00 0 0 0 0 0 0 0 0 Bs 0 0 0 0 0 0 —Bis
Az, | 00 0 B O 0 0 0 0 0 0 0 0 0 0 0 0 Bis
Az 0 0 0 Bs O 0 0 0 0 0 Bss O 0 0 0 0 0 0
Agy | 0 B —Pan 0 0 0 0 0 0 0 B O 0 0 0 Py O
Ags | 0 0 0 0 0 —Basy —Ban 0 B 0 0 0 0 0 0 Bus 0 0
Agg | O 0 0 0 Bz O 0 0 0 P O 0 By —Ps 0 0 0 0
Table 3. Structure of tensor with the internal symmetry (C,‘[V2 ]2V for the groups m3 and 23.

0oy 0o, 0oy 0Oo4 Oos 0Oog 0oy 0o, 0oy 0o, Oos Oog 0oy 0o, 0oy 0oy Oos 0oy

ox, aX, oX, o, o, o, X, oX, oX, oX, X, O0X, Xy oX; aK; AKXy AKXy oKy
Al 0O 0 0 By O O O O 0 O Bsps O 0 0 0 0 0 P
Ag,| 0 0 0 By O O O 0 0O 0 By O O 0 0 0 0 PBs
Agz] 0 0 0 By O 0 0O 0 0 0 B O O 0 0 0 0 PBa
Agy | Bat Pan Bazi 0 0 0 0 0 0 0 0 B O 0 0 0 Busz O
Ags | 0 0 0 0 0 Basy Bazt Banr Pan O 0 0 0 0 0 fir O 0
Agg| 0 0 0 0 By O 0 0 0 Bz 0 0 Biyy Pazy Ban 0 0 0

Table 4. Structure of tensor with the internal symmetry €[V>]*V for the groups oo/ mmm , comm , 2,

6/mmm, 622, 6mm and 6m?2 *,

0oy 0o, 0oy JOo, Oos 0oz 0oy 0o, 0oy 0o, Oos 0Oos 0oy 0o, 0oy 0o, 0os 00g

X, oK aX, ax, X, ax, X, X, AKX, X, X, X, O, X3 AKX, Xy X3 Xy
210 0 0 fa O 0 0 0 0 0 PBm 0 0 0 0 0 0 P
A 0 0 0 By O 0O 0 0 0 0 By O 0O 0 0 0 0 P
As| 0 0 0 By O O 0 0 0 0 By O O 0O 0O 0 0 0
Agy | Bat Ban Bz O 0 0 0 0 0 0 0 Buy O 0 0 0 Buss O
Ags| 00 0 0 0 —Bax —Ban —Pan P 0 0 0 0 0 0 Bz O 0
Agg | O 0 0 0 fBesi O 0 0 0 s O 0 B Bz O 0 0 0
*Notice that S5, = Bi41 + Besi and By = Bsgi + Banr -
Table 5. Structure of tensor with the internal symmetry £[V>]'V for the groups oo/m, o, 6/m, 6 and
6 **,

0oy 0o, 0oy 0o, Oos Oog 0o 0o, 0oy 0o, 0Oos 0Oogz Ooy 0o, 0oy 0o, 005 00

aX, oK, oK, X, OX, X, X, X, O, O, 0K, X, oK, X3 oK, OX; aX; X,
Ag | 0 0 0 Ba Bsi 0 0 0 0 B B 0 Bus Bz Pz O 0 PBie
Agy | O 0 0 -Biss B 0 0 0 0 Bisi —Ba 0 Bz Bus B 0 0 B
Agy | O 0 0 B Bsi 0 0 0 0 Bsi B 0 Bz Pz Pz O 0 0
Agy | Bant Pat Bz O 0 Bast Barz Pa  Pan 0 0 fp O 0 0 Paz Pasz O
Ags | Baz Parz Pazz O 0 B P —Ban P 0 0 Byt O 0 0 —Puyss Paz O
Agg | 0 0 0 Bour Besi 0 0 0 0 —Besi Boar 0 —Bisz Bz 0 0 0 Bess

**Notice that B, = (B; = Bis) /2, Boar = (Bisi = Bs21) /2. Pagt = (Bsii = Bsa1) /2, Bisy = Biay + Besi» and
Baa1 = Bse1 + Bar1 -

Table 6. Structure of tensor with the internal symmetry &[V>]*V for the groups 4/mmm, 422, 4mm and

42m.

0oy 0o, 0oy 0o, 0Oos Oog 0oy 0o, 0oy Oo, Oos Oog 0oy 0o, 0oy 0o, Oos 0Oog

A, X ax, X, A, A, A, X, X, A, A, X, Xy A Xy A, Ny A,
2] 0 0 0 Bm 0 0 0 0 0 0 Bm 0 0 0 0 0 0 B
M| 0 0 0 B O 0 0 0 0 0 By O 0 0 0 0 0 B
Ass| O 0 0 By O 0O 0O 0 0 0 By O 0O 0 0 0 0 0
Agy | Bant Bazt Bar O 0 0 0 0 0 0 0 By 0 0 0 0 Busz 0
Ags | 00 0 0 0 —Bax B —Par —Par O 0 fBazy O 0 0 —fus3 O 0
Agg| O 0 0 0 Besi O 0 0 0 —fesi 0 0 Bes =Pz 0 0 0 0
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Table 7. Structure of tensor with the internal symmetry £[V>]'V for the groups 4/m, 4 and 4.

0oy, 0o, 0oy 0o, Oos Oog ooy 0o, 0oy oy dos 0Oog 0oy 0o, 0oy 0Ooy Oos Oog
OX, OX, OX, ax, X, ax, ax, X, X, oY, X, O, O; X3 0K, OX; X3 0Ny
Agi | 0 0 0 B Bsi O 0 0 0 P B2 0 Bus Bz Bz O 0 Bies
Agy | 0 0 0 —Bisa B O 0 0 0 Bisi =B 0 By Buz Bz 0 0 —Bis
Agz | O 0 0 B Bsi O 0 0 0 Bsst =Baar O Baz Bus Pz 0 0 0
Agy | Bant Pan B O 0 Bast PBaz Paz  Pan 0 0 B O 0 0 Bauz Pass O
Ag5 ﬁ422 ﬁ412 ﬁ432 0 0 7ﬂ462 7/342] 7/34] 1 7/343] 0 0 ﬂ4(\1 0 0 0 7[3453 ﬁ443 0
Ags | 0 0 0 Bor Besi O 0 0 0 —Best B 0 Bezs —Pes O 0 0 Bess

From the viewpoint of bending-induced optical activity, the most interesting are crystals
described by the trigonal symmetry, i.e. those belonging to the groups 32, 3m, 3m, 3, and 3 (see
Tables 8 and 9). Spatial distributions of the stress component o, along the X axis in these
crystals (0o, /0X; # 0) would induce the optical rotation along the axis X3 (i.e., the optic axis).

We would remind that these symmetry groups embrace such well-known crystalline materials as
LiNbO;, LiTaO; and SiO,. Moreover, we are to comment that the optical rotation can be measured
along the optic axis using the simplest and the most reliable direct method based upon measuring a
polarization plane rotation.

Table 8. Structure of tensor with the internal symmetry £[V>]*V for the groups 32, 3mand 3m *.

do; 0o, 0oy 0o, Oos Oog 0oy 0o, 0oy 0Oo, 0os 0Oog 0o do, 0oy 0o, Oos 0o

N, X aX, ax, X, X, X, X, X, X, 0X, X, Xy OX; O aX, X, X
Ag | 0 0 Bz B 0 0 0 0 0 0 Bisa 0 0 0 0 0 Biss  Pies
Agy | 0 By B Bz O 0 0 0 0 0 By B 0 0 0 0 -Biss B
Agy | Bsn B O Bar O 0 0 0 0 0 =By B 0 0 0 0 0 0
Agy | Bant Bt Bt Bam O 0 0 0 0 0 Bar  Pasz 0 0 0 0 Bass  Paes
Ags | O 0 0 0 Bssi —Pax —Pan —Bann —Bazi Bssi 0 0 Basy —Pas 0 —Pasy 0 0
Agg | 0 0 0 0 Besi O 0 Bz —Bisi —Besi O 0 —Bos Pz 0 —Psz 0 0

Notice that By; =220 =2Ba62 » Poar = Bras + Besi > and Bagy = Pse; + By -

Table 9. Structure of tensor with the internal symmetry €[V>]*V for the groups 3 and 3 ™.

0oy 0o, 0oy Oo, Oos oy 0o 0o, 0oy 0o, Oos Jdog 0o oo, 0oy 0o, 0Oos 0oy
X, ax, A, A, ax, A, AKX, X, A, X, X, X, Xy Ak, K oK, Xy X
Agi | B O Bii B Bs Bt Bz 0 Bin B2 Bis2 0 Pz Bz Bz Bz Biss  Bies
Agy | 0 By Pt Pz P 0 0 By Bz Bsi Ba Pe Bz Bz Bz Pz Pz P
Agy (B B 0 B Bisi B Bt Pt 0 Bisi B P Bz Bz Bz 0 0 0
Agy | Bant Paat Bt Bam Basi Bast  Baz B Paa —Pasi B Pax Baz —Paz 0 Paz Pass Pass
Ags | Ban Baa Baz Bast Bssi —Pasr  —Pau —Pann Bt Bssi Bast Bast  Pass —Pass 0 —Pass —Paz Bas
Agﬁ ﬁ]f)] 0 ﬁ132 ﬁ64] ﬁ65| 7%ﬁ222 0 ﬁ(yzz 7ﬂ]3] 7ﬁ651 ﬁﬁ‘” 7%ﬂlll 7ﬁ613 ﬁﬁl} 0 7ﬁ153 ﬁl43 ﬁ663

“Notice that By13 = Bio3 +2Bee3> Bisi = Bsar + 2Bear> Bsit = Bsar +2Bagt» Bz = =3B =286 =206 »
Bzt ==3B111 = 2B =262 > Poar = Brar + Besi + Basi» and Bagy = Bsgy + Bsar + Payy -

In the crystals of orthorhombic groups, no spatial distribution of the bending stresses can
induce the optical rotation along the principal crystallographic axes (see Table 10).
In the monoclinic crystals belonging to the groups of symmetry 2/m, 2 and m (with 2 || Y and

m LY - see Table 11), the bending stresses 0o, /0X, (u =1,3) should lead to the appearance

of optical rotation along the principal crystallographic axes. Of course, the torsion-induced optical
activity that appears along the torsion axis is a property of all the point symmetry groups,
including the continuous-symmetry Curie groups. Finally, the matrix of the fifth-rank axial tensor
for the crystals of triclinic system consists of 108 independent no zero components.
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Table 10. Structure of tensor with the internal symmetry &[V’]*V for the groups mmm, 222 and

mm?2.
0oy 0o, 0oy 0o, Oos Oog 0oy 0o, 0oy 0o, 0Oos 0og 0oy 0o, 0oy 0o, 005 00
Agi | O 0 0 B 0 0 0 0 0 B O 0 0 0 0 0 B

0
Ag, | 0 0 0 By 0O 0 0 0 0 0 By O 0 0 0 0 0 P

0

0

A | 0 0 0 By 0 0 0 0 0 B 0 0 0 0 0 0 P
Agy | Bat Bat Paz O 0 0 0 0 0 0 P O 0 0 0 Bz 0
Ags | 0 0 0 0 0 Bsq Bsiz Bsp Bsn O 0 0 0 0 0 PBsyz 0 0
Agg | O 0 0 0 Besi 0 0 0 0 e O 0 Bz Bes Pes 0 0 0

Table 11. Structure of tensor with the internal symmetry [V>]*V for the groups 2/m, 2 and m
(2]|Y,mLY).

0oy 0o, 0oy 0o, Oos Oog 0oy 0o, 0oy 0o, Oos Oog 0oy 0o, 0oy 0o, Oos 00g
Agi | O 0 0 By 0 Bt Bz B Bz 0 Pz 0 0 0 0 Bz 0 B
Agy | O 0 0 B 0 Bt Pz Bz Bz 0 fosy 0 0 0 0 Bz 0 P
Agy | O 0 0 B 0 Bt Bz P Bz 0 Bz 0 0 0 0 Bz 0 B
Agy | Bt Bat Bai 0 Basi O 0 0 0 Bap O Basy Buz Bas Bz 0 Pusz O
Ags| 0 0 0 Bsst 0 Bssi Bsiz B Bsza 0 Pssy 0 0 0 0 PBsiz 0 PBse
Ags | Boit Beat Besi 0 Besi O 0 0 0 Bswx O Besx Berzs Beas Beszs 0 Bess O

As shown in our work [12], the rank of the tensor S, can be lowered down to four for

the both cases of torsion and bending. Then Eq. (1) may be rewritten as

5kiv (ROto-)im

Agln = ﬁlnkmvaakm /aXv = anim
2-06,

= animMim > (2)

where oy, implies the Kronecker delta, d;;, the Levi—Civita tensor, M, the second-rank axial
tensor associated with the torque and bending, and Q,,;,, the fourth-rank polar tensor with the
internal symmetry [V?]V> . Our analysis of the structures of matrices of the tensors f,,, and
Q;,im has shown that the two alternative descriptions of the gradient piezogyration effect in terms

of these tensors for the both cases of bending and torsion applied to crystals or textures agree fully
with each other.

3. Conclusions

In the present work we have derived the fifth-rank axial tensor with the internal symmetry
g[V’T'V that describes the gradient piezogyration effect for all of the point symmetry groups and
the Curie groups of continuous symmetry. We have found that there exist twelve different
structures of such a tensor that include the following groups: (1) oo/co/mmm and /w02 ; (2)
m3m, 432 and 43m; (3) m3 and 23; (4) co/mmm, comm , «2, 6/mmm, 622, 6mm and 6m2 ;
(5) ©/m, ©, 6/m, 6 and 6; (6) 4/mmm, 422, 4mm and 42m; (7) 4/m, 4 and 4, (8) 32, 3m and
3m;(9) 3 and 3; (10) mmm, 222 and mm2; (11) 2/m, 2 and m; and (12) 1 and 1.

We have demonstrated that the torsion stress should induce the optical rotation in crystals and
textures of all symmetry groups, whenever the torque moment is applied around the axes of the
principal coordinate system and the light beam propagates along the torsion axis. The mechanical-
stress inhomogeneity of the bending type would induce the optical activity along the principal
crystallographic axes only in a limited number of cases. Namely, this should occur for the
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symmetry groups o/m, o, 6/m, 6, 6,4/m, 4, 4 and 2/m, 2, m, 32, 3m, 3m, 3, and 3. Only in
the trigonal groups the optical rotation would appear along the optic axis under the bending stress
gradient 0o, /0X,. Finally, we have shown that the approaches describing the gradient

piezogyration for the cases of bending and torsion in terms of the fifth-rank axial tensor and the
fourth-rank polar tensor give rise to the same results and so fully agree with each other.
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Anomauyia. Mu ompumanu mampuyi axciaibHo20 MEH30pa N ’AMo20 pawey i3 GHYMPIuHbOIO
. 292 . o . . o .

cumempiero [V-1V , wo onucye epadienmuuil n’e302ipayitinuti ecoekm 05 8CIX MOUYKOBUX 2PYN

cumempii ma epanuynux epyn cumempii Kwopi. Bemarnosneno, wo ichye 08anaoysimv pi3HUX

cmpykmyp makozo mensopa. I padicnmuy n’c3ozipayilo npoananizoeano 01 6UNAOKI@ Kpy4eHHs.

ma 32Uy Kpucmaiie i mexcmyp.
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