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Abstract. We have derived a fifth-rank axial tensor with the internal symmetry 
2 2[V ] V  that describes the gradient piezogyration effect for all the point symmetry 

groups, including continuous-symmetry groups. It has been found that twelve 
different structures of such a tensor can be distinguished. The gradient piezogyration 
effect is analyzed for the cases of torsion and bending of crystals and crystalline 
textures.  
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1. Introduction 
Recently we have shown [1–4] that mechanical torsion can induce an optical rotation in crystals 
possessing no natural optical activity or a common piezogyration effect [5–8]. This phenomenon 
described as a gradient piezogyration effect is caused by a spatial gradient of mechanical stresses 
rather than the stresses themselves. The tensorial relation describing the gradient piezogyration 
effect is as follows: 

/ln lnkmv km vg X     ,     (1) 

where lng  denotes the induced increment of the gyration tensor, /km vX   the coordinate 

derivative of the stress tensor, and lnkmv  a fifth-rank axial tensor. Further on we will use a 

standard matrix notation explained in detail, e.g., in the textbook [9]. Namely, we have 

lnkmv v   when , 1,...,6l n   , 1, 2, 3km    and 2lnkmv v   when 

, 1,...,6l n   , 4,5,6k m   . Notice that the fifth-rank axial tensor remains nonzero in the 

material media including second-order symmetry operations such as a centre of symmetry, mirror 
planes or inversion axes. Therefore the effect mentioned above is not forbidden even in 
centrosymmetric media.  

In our recent work [4] we have analyzed manifestations of the gradient piezogyration effect 
under condition when an inhomogeneous stress field is caused by a torsion moment applied to 
crystals not possessing the natural optical activity. Nonetheless, one can notice that the torsion-
induced optical activity (see, e.g., the study [3] where it has been verified experimentally) 
represents, maybe, the simplest case of the gradient piezogyration. It is obvious that the optical 
rotation can be produced by different kinds of coordinate dependences of the stress tensor 
components. In order to analyze in detail the effect, one needs to know in advance the forms of the 
fifth-rank axial tensor for all the point symmetry groups, including the infinite-order Curie groups. 
As far as we know, the tensor with the internal symmetry 2 2[V ] V  has not been derived before. 
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Therefore the present work is aimed at obtaining the structure of this tensor for different point 
symmetry groups. 

2. Fifth-rank axial tensor for different point groups 
To derive the tensor with the internal symmetry 2 2[V ] V  for most of the point groups, it is 

sufficient to use a method by F. G. Fumi (a so-called method of direct inspection) [10]. While 
deriving the tensor for the trigonal and hexagonal systems, as well as for the Curie groups (i.e., 
those including rotation axes of infinite order), one has to apply a method of cyclic coordinates [9]. 
Finally, the number of independent components in the tensor has been checked using a group-
theoretical technique (see Refs. [9, 11]). 

Employing the techniques mentioned, we have obtained 12 different structures of the tensor 
for different symmetry systems. The latter systems are such that they include the following 
symmetry groups: (1) / / mmm   and / 2  ; (2) m3m, 432 and 43m ; (3) m3 and 23; (4) 

/ mmm , mm , 2 , 6/mmm, 622, 6mm and 6m2 ; (5) / m ,  , 6/m, 6 and 6 ; (6) 4/mmm, 
422, 4mm and 42m ; (7) 4/m, 4 and 4 ; (8) 32, 3m and 3m ; (9) 3 and 3 ; (10) mmm, 222 and 
mm2; (11) 2/m, 2 and m; and (12) 1 and 1 . The corresponding matrices of the tensor written in 
the principal coordinate system associated with the optical Fresnel ellipsoid are represented in 
Tables 1–12.  
Table 1. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups / / mmm   and / 2  . 

3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 152 152

2 152 152

3 152 152

4 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

X X X X X X X X X X X X X X X X X X
g
g
g
g

                

 
 
 



                
                 

 
 
 
  2 152 152 152

5 152 152 152 152

6 152 152 152 152

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

g
g

  
   

   


  
  

 

As seen from Table 1, the tensor with the internal symmetry 2 2[V ] V  is nonzero even for the 

isotropic media. Here it includes a single independent component 152 . As already mentioned in 

the work [4], the torsion-induced optical activity has to appear in these media if the light 
propagates along the torsion axis. On the other hand, the stress-component gradients 2 1/ X   (or 

3 1/ X  ) appearing, e.g., under bending would induce the only gyration tensor component 4g . 

The latter can be measured under very inconvenient experimental conditions: the light beam 
should be incident oblique with respect to a surface of sample of a rectangular shape, with the 
surfaces being perpendicular to the coordinate axes. The same is true for all of the derivatives 

/ vX  , where , 1, 2, 3   . This is also the property for the symmetry groups / mmm , 

mm , 2 , m3m, 432, 43m , m3, 23, 6/mmm, 622, 6mm, 6m2 , 4/mmm, 422, 4mm, and 42m . 
In other words, the torsion applied around the principal axes would lead to appearance of the 
optical rotation along the direction of torsion axis, while the bending would not (see Tables 2, 3, 4 
and 6).  

Nonetheless, the bending stresses 3/ X   ( 1, 2  ) applied to materials belonging to the 

symmetry groups / m ,  , 6/m, 6, 6 , 4/m, 4 and 4 , would induce the optical activity along all 
of the principal axes (see Tables 5 and 7).  



Fifth-rank axial tensor 

Ukr. J. Phys. Opt. 2013, Volume 14, Issue 3 131 

Table 2. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups m3m, 432 and 43m . 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 152 152

2 152 152

3 152 152

4 421

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0

X X X X X X X X X X X X X X X X X X
g
g
g
g

                

 
 
 



                
                 

 
 
 
 421 462 462

5 462 421 421 462

6 462 462 421 421

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

g
g

  
   

   

 
  
  

 

Table 3. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups m3 and 23. 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 141 152 163

2 163 141 152

3 152 163 141

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g
g
g

                

  
  
  

                
                 




 4 411 421 431 462 453

5 453 431 411 421 462

6 462 453 421 431 411

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

g
g

    
    

    



 

Table 4. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups / mmm , mm , 2 , 

6/mmm, 622, 6mm and 6m2 *. 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 141 152 163

2 152 141 163

3 341 341

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g
g

                

  
  
 

                
                 


   
 
 4 411 421 431 462 453

5 462 421 411 431 453

6 651 651 163 163

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

g
g
g

    
    

   
     
  

*Notice that 152 141 651     and 421 561 411    . 

Table 5. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups / m ,  , 6/m, 6 and 

6 **. 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 141 151 142 152 113 123 133 163

2 152 142 151 141 123 113 133 16

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g

                

       
       

                
                 


    3

3 341 351 351 341 313 313 333

4 411 421 431 461 412 422 432 462 443 453

5 422 412 432 462 421 411 431 461 453 443

6 641 651 651 641 163 163 663

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

g
g
g
g

      
         
         

      

 

     
  

 

**Notice that 663 113 123( ) / 2    , 641 151 521( ) / 2    , 461 511 521( ) / 2    , 152 141 651    , and 

421 561 411    . 
 

Table 6. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups 4/mmm, 422, 4mm and 

42m . 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 141 152 163

2 152 141 163

3 341 341

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g
g

                

  
  
 

                
                 


   
 
 4 411 421 431 462 453

5 462 421 411 431 431 453

6 651 651 613 613

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

g
g
g

    
     

   
     
  
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Table 7. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups 4/m, 4 and 4 . 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 141 151 142 152 113 123 133 163

2 152 142 151 141 123 113 133 16

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g

                

       
       

                
                 


    3

3 341 351 351 341 313 313 333

4 411 421 431 461 412 422 432 462 443 453

5 422 412 432 462 421 411 431 461 453 443

6 641 651 651 641 613 613 663

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

g
g
g
g

      
         
         

      

 

     
  

 
From the viewpoint of bending-induced optical activity, the most interesting are crystals 

described by the trigonal symmetry, i.e. those belonging to the groups 32, 3m, 3m , 3, and 3  (see 
Tables 8 and 9). Spatial distributions of the stress component 2  along the 1X  axis in these 

crystals ( 2 1/ 0X   ) would induce the optical rotation along the axis 3X  (i.e., the optic axis). 

We would remind that these symmetry groups embrace such well-known crystalline materials as 
LiNbO3, LiTaO3 and SiO2. Moreover, we are to comment that the optical rotation can be measured 
along the optic axis using the simplest and the most reliable direct method based upon measuring a 
polarization plane rotation. 

 

Table 8. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups 32, 3m and 3m +. 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 131 141 152 153 163

2 221 131 152 141 262 153 163

3 311 3

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g
g

                

    
      

 

                
                 


    
  11 341 341 311

4 411 421 431 441 441 462 453 463

5 551 462 421 411 431 551 463 463 453

6 651 622 131 651 613 613 153

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

g
g
g

  
       

        
      

 

      
    

 

+Notice that 221 622 2622 2     , 241 141 651    , and 421 561 411    . 
 

Table 9. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups 3 and 3 ++. 
3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 111 131 141 151 161 112 132 142 152 113 123 133 143 153 163

2 221 131 152 142 2

0 0 0
0 0 0

X X X X X X X X X X X X X X X X X X
g
g

                

              
    

                
                 


   22 132 151 141 262 123 113 133 143 153 163

3 311 311 341 351 361 361 361 351 341 311 313 313 333

4 411 421 431 441 451 461 412 422 432 451 441 462 413 413 443 453 463

5 422 412 432

0 0 0 0 0
0

g
g
g

         
            
                
   

   
    
  
 451 551 462 421 411 431 551 451 461 463 463 453 443 413

1 1
6 161 132 641 651 222 622 131 651 641 111 613 613 153 143 6632 2

0
0 0 0g

            
              

      
      

 

++Notice that 113 123 6632    , 151 521 6412    , 511 521 4612    , 112 111 622 2623 2 2       , 

221 111 622 2623 2 2       , 241 141 651 451      , and 421 561 541 411      . 

 
In the crystals of orthorhombic groups, no spatial distribution of the bending stresses can 

induce the optical rotation along the principal crystallographic axes (see Table 10). 
In the monoclinic crystals belonging to the groups of symmetry 2/m, 2 and m (with 2 Y  and 

m Y   – see Table 11), the bending stresses 2/ X   ( 1, 3  ) should lead to the appearance 

of optical rotation along the principal crystallographic axes. Of course, the torsion-induced optical 
activity that appears along the torsion axis is a property of all the point symmetry groups, 
including the continuous-symmetry Curie groups. Finally, the matrix of the fifth-rank axial tensor 
for the crystals of triclinic system consists of 108 independent no zero components. 
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Table 10. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups mmm, 222 and 
mm2.  

3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 141 152 163

2 241 252 263

3 341 352 363

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g
g
g

                

  
  
  

                
                 




 4 411 421 431 462 453

5 561 512 522 532 543

6 651 642 613 623 633

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

g
g

    
    

    



 

 
Table 11. Structure of tensor with the internal symmetry 2 2[V ] V  for the groups 2/m, 2 and m 
( 2 , mY Y ). 

3 5 6 3 5 6 3 5 61 2 4 1 2 4 1 2 4

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3

1 141 161 112 122 132 152 143 163

2 241 261 212 222 232 252 243 263

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

X X X X X X X X X X X X X X X X X X
g
g
g

                

       
       

                
                 



 3 341 361 312 322 332 352 343 363

4 411 421 431 451 442 462 413 423 433 453

5 541 561 512 522 532 552 543 563

6 611 621 631 651 642 662 613 623 633 653

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

g
g
g

       
         

       
         





 

As shown in our work [12], the rank of the tensor lnkmv  can be lowered down to four for 

the both cases of torsion and bending. Then Eq. (1) may be rewritten as 

(Rot )
/

2
ki im

ln lnkmv km v lnim lnim im
km

g X M 
 


       


,   (2) 

where km  implies the Kronecker delta, ki  the Levi–Civita tensor, imM  the second-rank axial 

tensor associated with the torque and bending, and lnim  the fourth-rank polar tensor with the 

internal symmetry [V2]V2 . Our analysis of the structures of matrices of the tensors lnkmv  and 

lnim  has shown that the two alternative descriptions of the gradient  piezogyration effect in terms 

of these tensors for the both cases of bending and torsion applied to crystals or textures agree fully 
with each other. 

3. Conclusions 
In the present work we have derived the fifth-rank axial tensor with the internal symmetry 

2 2[V ] V  that describes the gradient piezogyration effect for all of the point symmetry groups and 

the Curie groups of continuous symmetry. We have found that there exist twelve different 
structures of such a tensor that include the following groups: (1) / / mmm   and / 2  ; (2) 
m3m, 432 and 43m ; (3) m3 and 23; (4) / mmm , mm , 2 , 6/mmm, 622, 6mm and 6m2 ; 
(5) / m ,  , 6/m, 6 and 6 ; (6) 4/mmm, 422, 4mm and 42m ; (7) 4/m, 4 and 4 ; (8) 32, 3m and 
3m ; (9) 3 and 3 ; (10) mmm, 222 and mm2; (11) 2/m, 2 and m; and (12) 1 and 1 .  

We have demonstrated that the torsion stress should induce the optical rotation in crystals and 
textures of all symmetry groups, whenever the torque moment is applied around the axes of the 
principal coordinate system and the light beam propagates along the torsion axis. The mechanical-
stress inhomogeneity of the bending type would induce the optical activity along the principal 
crystallographic axes only in a limited number of cases. Namely, this should occur for the 
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symmetry groups / m ,  , 6/m, 6, 6 , 4/m, 4, 4  and 2/m, 2, m, 32, 3m, 3m , 3, and 3 . Only in 
the trigonal groups the optical rotation would appear along the optic axis under the bending stress 
gradient 2 1/ X  . Finally, we have shown that the approaches describing the gradient 

piezogyration for the cases of bending and torsion in terms of the fifth-rank axial tensor and the 
fourth-rank polar tensor give rise to the same results and so fully agree with each other. 
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Анотація. Ми отримали матриці аксіального тензора п’ятого рангу із внутрішньою 
симетрією 2 2[ ]V V , що описує градієнтний п’єзогіраційний ефект для всіх точкових груп 
симетрії та граничних груп симетрії Кюрі. Встановлено, що існує дванадцять різних 
структур такого тензора. Градієнтну п’єзогірацію проаналізовано для випадків кручення 
та згину кристалів і текстур. 
 
 


